A080670 Literal reading of the prime factorization of n.
1, 2, 3, 22, 5, 23, 7, 23, 32, 25, 11, 223, 13, 27, 35, 24, 17, 232, 19, 225, 37, 211, 23, 233, 52, 213, 33, 227, 29, 235, 31, 25, 311, 217, 57, 2232, 37, 219, 313, 235, 41, 237, 43, 2211, 325, 223, 47, 243, 72, 252, 317, 2213, 53, 233, 511, 237, 319, 229, 59, 2235
Offset: 1
Examples
8=2^3, which reads 23, hence a(8)=23; 12=2^2*3, which reads 223, hence a(12)=223.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Tony Padilla and Brady Haran, 13532385396179, Numberphile Video, 2017
- N. J. A. Sloane, Confessions of a Sequence Addict (AofA2017), slides of invited talk given at AofA 2017, Jun 19 2017, Princeton. Mentions this sequence.
- N. J. A. Sloane, Three (No, 8) Lovely Problems from the OEIS, Experimental Mathematics Seminar, Rutgers University, Oct 05 2017, Part I, Part 2, Slides. (Mentions this sequence)
Crossrefs
Programs
-
Haskell
import Data.Function (on) a080670 1 = 1 a080670 n = read $ foldl1 (++) $ zipWith (c `on` show) (a027748_row n) (a124010_row n) :: Integer where c ps es = if es == "1" then ps else ps ++ es -- Reinhard Zumkeller, Oct 27 2013
-
Maple
ifsSorted := proc(n) local fs,L,p ; fs := sort(convert(numtheory[factorset](n),list)) ; L := [] ; for p in fs do L := [op(L),[p,padic[ordp](n,p)]] ; end do; L ; end proc: A080670 := proc(n) local a,p ; if n = 1 then return 1; end if; a := 0 ; for p in ifsSorted(n) do a := digcat2(a,op(1,p)) ; if op(2,p) > 1 then a := digcat2(a,op(2,p)) ; end if; end do: a ; end proc: # R. J. Mathar, Oct 02 2011 # second Maple program: a:= proc(n) option remember; `if`(n=1, 1, (l-> parse(cat(seq(`if`(l[i, 2]=1, l[i, 1], [l[i, 1], l[i, 2]][]), i=1..nops(l)))))(sort(ifactors(n)[2]))) end: seq(a(n), n=1..100); # Alois P. Heinz, Mar 17 2020
-
Mathematica
f[n_] := FromDigits[ Flatten@ IntegerDigits[ Flatten[ FactorInteger@ n /. {1 -> {}}]]]; f[1] = 1; Array[ f, 60] (* Robert G. Wilson v, Mar 02 2003 and modified Jul 22 2014 *)
-
PARI
A080670(n)=if(n>1, my(f=factor(n),s=""); for(i=1,#f~,s=Str(s,f[i,1],if(f[i,2]>1, f[i,2],""))); eval(s),1) \\ Charles R Greathouse IV, Oct 27 2013; case n=1 added by M. F. Hasler, Oct 18 2014
-
PARI
A080670(n)=if(n>1,eval(concat(apply(f->Str(f[1],if(f[2]>1,f[2],"")),Vec(factor(n)~)))),1) \\ M. F. Hasler, Oct 18 2014
-
Python
import sympy [int(''.join([str(y) for x in sorted(sympy.ntheory.factorint(n).items()) for y in x if y != 1])) for n in range(2,100)] # compute a(n) for n > 1 # Chai Wah Wu, Jul 15 2014
Extensions
Edited and extended by Robert G. Wilson v, Mar 02 2003
Comments