cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080671 Numbers having divisors 2 or 3 or 5.

Original entry on oeis.org

2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 92, 93, 94, 95, 96, 98
Offset: 1

Views

Author

Cino Hilliard, Mar 02 2003

Keywords

Comments

Complement of A007775. - Gary Detlefs, Oct 06 2013
The asymptotic density of this sequence is 11/15. - Amiram Eldar, Dec 07 2020

Crossrefs

Cf. A005843, A007775, A281746 (divisors 3 or 5).

Programs

  • Maple
    A080671 := proc(n) local s; option remember;
    s:=[2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30];
    if n <= 22 then s[n] else 30 + A080671(n-22); fi; end proc; # N. J. A. Sloane, Sep 01 2022
  • Mathematica
    Select[Range[98], Mod[#, 2]*Mod[#, 3]*Mod[#, 5] == 0 &] (* T. D. Noe, Oct 07 2013 *)
    d235Q[n_]:=AnyTrue[Divisors[n],MemberQ[{2,3,5},#]&]; Select[Range[100],d235Q] (* Harvey P. Dale, Sep 22 2024 *)
  • PARI
    div235(n) = { for(x=1,n, if(gcd(x,30)<>1,print1(x", ")) ) }

Formula

a(n+22) = a(n) + 30. - Gary Detlefs, Oct 06 2013
G.f.: x *( 2 -x +2*x^2 -x^3 +2*x^4 +x^6 +2*x^8 +x^10 +2*x^12 +x^14 +2*x^16 -x^17 +2*x^18 -x^19 +2*x^20 ) / ( (x^10 -x^9 +x^8 -x^7 +x^6 -x^5 +x^4 -x^3 +x^2 -x+1)*(1 +x +x^5 +x^6 +x^7 +x^8 +x^9 +x^2 +x^4 +x^3 +x^10)*(x-1)^2 ). - R. J. Mathar, Jul 11 2024
Union of A281746 and A005843, without {0}. - R. J. Mathar, Jul 11 2024