cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080696 Piptorial numbers = product of first n pips or prime-indexed primes.

Original entry on oeis.org

3, 15, 165, 2805, 86955, 3565155, 210344145, 14093057715, 1169723790345, 127499893147605, 16192486429745835, 2542220369470096095, 455057446135147201005, 86915972211813115391955, 18339270136692567347702505, 4419764102942908730796303705
Offset: 1

Views

Author

Cino Hilliard, Mar 04 2003

Keywords

Comments

The numbers after the first always end in 5. This is obvious since all pips are odd and their product (excluding 5) = 2k+1 and 5*(2k+1) = 10k+5. Sum of reciprocals converges to 0.4064288978193657814428353009..

Examples

			prime(prime(1)), prime(prime(1))*prime(prime(2)), ...
pip(1) = 3, pip(2) = 5, pip(3) = 11; piptorial(3) = 3*5*11 = 165.
		

Crossrefs

Cf. A006450.

Programs

  • Mathematica
    nn=50;FoldList[Times,1,Transpose[Select[Thread[{Prime[Range[nn]], Range[nn]}], PrimeQ[ Last[#]]&]][[1]]] (* Harvey P. Dale, Jul 05 2011 *)
    FoldList[Times,Table[Prime[Prime[n]],{n,20}]] (* Harvey P. Dale, May 06 2018 *)
  • PARI
    piptorial(n) = {sr=0; pr=1; for(x=1,n, y=prime(prime(x)); pr*=y; print1(pr" "); sr+=1.0/pr; ); print(); print(sr) }
    
  • PARI
    a(n) = prod(k=1, n, prime(prime(k))); \\ Michel Marcus, Mar 15 2021
    
  • Python
    from sympy import prime, nextprime
    def aupton(terms):
      prod, p, alst = 1, 2, []
      while len(alst) < terms:
        p, prod = nextprime(p), prod * prime(p)
        alst.append(prod)
      return alst
    print(aupton(16)) # Michael S. Branicky, Mar 15 2021

Formula

a(n) = Product_{k=1..n} prime(prime(k)). - Michel Marcus, Mar 15 2021

Extensions

Name clarified by Michel Marcus, Aug 04 2015
More terms from Harvey P. Dale, May 06 2018