cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A090886 Primes in the products of consecutive prime-indexed primes + 2 or A080696(n) + 2.

Original entry on oeis.org

5, 17, 167, 14093057717, 16192486429745837, 114681479899746991802547357477494807, 12994174855450524638613469509299054674461271855442034674644855689971858721497
Offset: 1

Views

Author

Cino Hilliard, Feb 12 2004

Keywords

Comments

These numbers, except for the first one, always end in 7.
The next term (a(8)) has 129 digits. - Harvey P. Dale, Apr 05 2019

Crossrefs

Programs

  • Mathematica
    Select[FoldList[Times,Table[Prime[n],{n,Prime[Range[40]]}]]+2,PrimeQ] (* Harvey P. Dale, Apr 05 2019 *)
  • PARI
    piptorial2(n) = { y=1; for(x=1,n, v=prime(prime(x)); y*=v; if(isprime(y+2),print1(y+2",")) ) }

A087400 Primes p such that p+2 is a piptorial number. Also numbers such that A080696(n)- 2 is prime.

Original entry on oeis.org

13, 163, 2803, 3565153, 210344143, 86915972211813115391953, 4419764102942908730796303703, 114681479899746991802547357477494803
Offset: 1

Views

Author

Cino Hilliard, Oct 21 2003

Keywords

Comments

Piptorial numbers are the partial products of prime-indexed primes.
Sum of reciprocals = 0.08341509210884323904648676616...
a(9) = A080696(1111) - 2 = 1.0954...*10^4885. - Amiram Eldar, Jul 05 2024

Examples

			(Product of first four pips) - 2 = 3*5*11*17 - 2 = 2805 - 2 = 2803, which is prime, so 2803 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    seq[kmax_] := Module[{r = 1, p = 1, s = {}}, Do[p = NextPrime[p]; r *= Prime[p]; If[PrimeQ[r - 2], AppendTo[s, r - 2]], {k, 1, kmax}]; s]; seq[20] (* Amiram Eldar, Jul 05 2024 *)
  • PARI
    piptorial(n) = { s=0; p=1; for(x=1,n, p=p*prime(prime(x)); if(isprime(p-2),print1(p-2","); s+=1.0/(p-2)) ); print(); print(s) }

A327406 Number of steps to reach a fixed point starting with n and repeatedly taking the quotient by the maximum divisor that is 1 or whose prime indices have a common divisor > 1 (A327405, A327656).

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 0, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 0, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2
Offset: 1

Views

Author

Gus Wiseman, Sep 21 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. Numbers whose prime indices have a common divisor > 1 are listed in A318978.
Note that A318978 includes also all odd primes and their powers, thus the only numbers for which a maximum such divisor is 1 are the powers of 2. Therefore A000079 gives the indices of zeros in this sequence. - Antti Karttunen, Dec 06 2021

Examples

			We have 5115 -> 165 -> 15 -> 3 -> 1, so a(5115) = 4.
		

Crossrefs

First appearance of n is A080696(n).
See link for additional cross-references.
Cf. A000005, A000079 (positions of 0's), A056239, A112798, A281116, A289509, A302569, A318978.

Programs

  • Mathematica
    Table[Length[FixedPointList[#/Max[Select[Divisors[#],GCD@@PrimePi/@First/@FactorInteger[#]!=1&]]&,n]]-2,{n,100}]
  • PARI
    A327405(n) = (n / vecmax(select(d -> (1==d)||(gcd(apply(primepi,factor(d)[, 1]~))>1), divisors(n))));
    A327406(n) = { my(u = A327405(n), k=0); while(u!=n, k++; n = u; u = A327405(n)); (k); }; \\ Antti Karttunen, Dec 06 2021

Extensions

Data section extended up to 105 terms by Antti Karttunen, Dec 06 2021

A304117 If n = Product (p_j^k_j) then a(n) = Product (pi(p_j)*k_j), where pi() = A000720.

Original entry on oeis.org

1, 1, 2, 2, 3, 2, 4, 3, 4, 3, 5, 4, 6, 4, 6, 4, 7, 4, 8, 6, 8, 5, 9, 6, 6, 6, 6, 8, 10, 6, 11, 5, 10, 7, 12, 8, 12, 8, 12, 9, 13, 8, 14, 10, 12, 9, 15, 8, 8, 6, 14, 12, 16, 6, 15, 12, 16, 10, 17, 12, 18, 11, 16, 6, 18, 10, 19, 14, 18, 12, 20, 12, 21, 12, 12, 16, 20, 12, 22, 12
Offset: 1

Views

Author

Ilya Gutkovskiy, May 06 2018

Keywords

Examples

			a(36) = 8 because 36 = 2^2*3^2 = prime(1)^2*prime(2)^2 and 1*2*2*2 = 8.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Times @@ (PrimePi[#[[1]]] #[[2]] & /@ FactorInteger[n]); a[1] = 1; Table[a[n], {n, 1, 80}]
  • PARI
    a(n) = my(f=factor(n)); for (k=1, #f~, f[k,1] = primepi(f[k,1])*f[k,2]; f[k, 2] = 1); factorback(f); \\ Michel Marcus, May 06 2018

Formula

a(n) = A005361(n)*A156061(n).
a(p^k) = A000720(p)*k where p is a prime.
a(A002110(m)^k) = k^m*m!.
As an example:
a(A000040(k)) = k.
a(A006450(k)) = A000040(k).
a(A001248(k)) = a(A031215(k)) = A005843(k).
a(A030078(k)) = a(A031336(k)) = A008585(k)
a(A061742(k)) = A000165(k).
a(A115964(k)) = A032031(k).
a(A002110(k)) = A000142(k).
a(A080696(k)) = A002110(k).

A304037 If n = Product (p_j^k_j) then a(n) = Sum (pi(p_j)^k_j), where pi() = A000720.

Original entry on oeis.org

0, 1, 2, 1, 3, 3, 4, 1, 4, 4, 5, 3, 6, 5, 5, 1, 7, 5, 8, 4, 6, 6, 9, 3, 9, 7, 8, 5, 10, 6, 11, 1, 7, 8, 7, 5, 12, 9, 8, 4, 13, 7, 14, 6, 7, 10, 15, 3, 16, 10, 9, 7, 16, 9, 8, 5, 10, 11, 17, 6, 18, 12, 8, 1, 9, 8, 19, 8, 11, 8, 20, 5, 21, 13, 11, 9, 9, 9, 22, 4, 16, 14, 23, 7, 10, 15, 12, 6
Offset: 1

Views

Author

Ilya Gutkovskiy, May 05 2018

Keywords

Examples

			a(72) = 5 because 72 = 2^3*3^2 = prime(1)^3*prime(2)^2 and 1^3 + 2^2 = 5.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Plus @@ (PrimePi[#[[1]]]^#[[2]]& /@ FactorInteger[n]); a[1] = 0; Table[a[n], {n, 1, 88}]

Formula

If gcd(u,v) = 1 then a(u*v) = a(u) + a(v).
a(p^k) = A000720(p)^k where p is a prime.
a(A002110(m)^k) = 1^k + 2^k + ... + m^k.
As an example:
a(A000040(k)) = k.
a(A006450(k)) = A000040(k).
a(A038580(k)) = A006450(k).
a(A001248(k)) = a(A011757(k)) = A000290(k).
a(A030078(k)) = a(A055875(k)) = A000578(k).
a(A002110(k)) = a(A011756(k)) = A000217(k).
a(A061742(k)) = A000330(k).
a(A115964(k)) = A000537(k).
a(A080696(k)) = A007504(k).
a(A076954(k)) = A001923(k).

A328512 Number of distinct connected components of the multiset of multisets with MM-number n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 1, 3, 1, 2, 1, 1, 1, 3, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 3, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Oct 20 2019

Keywords

Comments

For n > 1, the first appearance of n is 2 * A080696(n - 1).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The multiset of multisets with MM-number 1508 is {{},{},{1,2},{1,3}}, which has the 3 connected components {{}}, {{}}, and {{1,2},{1,3}}, two of which are distinct, so a(1508) = 2.
The multiset of multisets with MM-number 12818 is {{},{1,2},{4},{1,3}}, which has the 3 connected components {{}}, {{1,2},{1,3}}, and {{4}}, so a(12818) = 3.
		

Crossrefs

Positions of 0's and 1's are A305078 together with all powers of 2.
Connected numbers are A305078.
Connected components are A305079.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    Table[Length[Union[zsm[primeMS[n]]]],{n,100}]
  • PARI
    zero_first_elem_and_connected_elems(ys) = { my(cs = List([ys[1]]), i=1); ys[1] = 0; while(i<=#cs, for(j=2, #ys, if(ys[j]&&(1!=gcd(cs[i], ys[j])), listput(cs, ys[j]); ys[j] = 0)); i++); (ys); };
    A007814(n) = valuation(n, 2);
    A000265(n) = (n/2^A007814(n));
    A328512(n) = if(!(n%2), 1+A328512(A000265(n)), my(cs = apply(p -> primepi(p), factor(n)[, 1]~), s=0); while(#cs, cs = select(c -> c, zero_first_elem_and_connected_elems(cs)); s++); (s)); \\ Antti Karttunen, Jan 28 2025

Formula

If n is even, a(n) = A305079(n) - A007814(n) + 1; otherwise, a(n) = A305079(n).

Extensions

Data section extended to a(105) by Antti Karttunen, Jan 28 2025
Showing 1-6 of 6 results.