A080716 Numbers n such that sum of the divisors of n equals the sum of the reversals of the divisors of n.
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 30, 33, 42, 44, 55, 66, 77, 88, 99, 101, 121, 131, 151, 181, 191, 202, 242, 262, 303, 313, 330, 353, 363, 373, 383, 393, 404, 462, 484, 505, 606, 626, 681, 707, 727, 757, 772, 787, 797, 808, 824, 890, 909, 919, 929, 939, 989, 1111
Offset: 1
Examples
Sum of divisors of 30: 1+2+3+5+6+10+15+30=72; sum of reversals of divisors of 30: 1+2+3+5+6+1+51+3=72. Therefore 30 belongs to the sequence.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..8811 (terms below 10^10, terms 1..300 from Paolo P. Lava)
Programs
-
Maple
isA080716 := proc(n) simplify(A069192(n) = numtheory[sigma](n)) ; end proc: for n from 1 to 1000 do if isA080716(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Sep 09 2015
-
Mathematica
rev[n_] := FromDigits[Reverse[IntegerDigits[n]]]; Select[Range[10^4], Apply[Plus, Map[rev, Divisors[ # ]]] == DivisorSigma[1, # ] &] Select[Range[1200],Total[IntegerReverse/@Divisors[#]]==DivisorSigma[1,#]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 07 2020 *)