A080738 Array read by rows in which 0th row is {1,2}; for n>0, n-th row gives finite orders of 2n X 2n integer matrices that are not orders of 2n-1 X 2n-1 integer matrices.
1, 2, 3, 4, 6, 5, 8, 10, 12, 7, 9, 14, 15, 18, 20, 24, 30, 16, 21, 28, 36, 40, 42, 60, 11, 22, 35, 45, 48, 56, 70, 72, 84, 90, 120, 13, 26, 33, 44, 63, 66, 80, 105, 126, 140, 168, 180, 210, 39, 52, 55, 78, 88, 110, 112, 132, 144, 240, 252, 280, 360, 420, 17, 32, 34, 65, 77
Offset: 0
Examples
The array begins: 1, 2; 3, 4, 6; 5, 8, 10, 12; 7, 9, 14, 15, 18, 20, 24, 30; ...
Links
- Reinhard Zumkeller, Rows n = 0..25 of triangle, flattened
- J. Bamberg, G. Cairns and D. Kilminster, The crystallographic restriction, permutations and Goldbach's conjecture, Amer. Math. Monthly, 110 (March 2003), 202-209.
- W. Steurer and S. Deloudi, Higher-Dimensional Approach. In: Crystallography of Quasicrystals. Springer Series in Materials Science, vol 126. Springer, Berlin, Heidelberg, 2009.
Programs
-
Haskell
import Data.Map (singleton, deleteFindMin, insertWith) a080738 n k = a080738_tabf !! n !! k a080738_row n = a080738_tabf !! n a080738_tabf = f 3 (drop 2 a080737_list) 3 (singleton 0 [2,1]) where f i xs'@(x:xs) till m | i > till = (reverse row) : f i xs' (3 * head row) m' | otherwise = f (i + 1) xs till (insertWith (++) (div x 2) [i] m) where ((_,row),m') = deleteFindMin m -- Reinhard Zumkeller, Jun 13 2012
-
Mathematica
a080737[1] = a080737[2] = 0; a080737[p_?PrimeQ] := a080737[p] = p-1; a080737[n_] := a080737[n] = If[ Length[fi = FactorInteger[n]] == 1, EulerPhi[n], Total[ a080737 /@ (fi[[All, 1]]^fi[[All, 2]])]]; orders = Table[{n, a080737[n]}, {n, 1, 420}]; row[0] = {1, 2};row[n_] := Select[ orders, 2n-1 <= #[[2]] <= 2n & ][[All, 1]]; A080738 = Flatten[ Table[ row[n], {n, 0, 8}]] (* Jean-François Alcover, Jun 20 2012 *)
Extensions
More terms from Vladeta Jovovic, Mar 09 2003
Comments