cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A080739 Number of elements in n-th row of A080738.

Original entry on oeis.org

2, 3, 4, 8, 7, 11, 13, 14, 20, 26, 30, 42, 43, 49, 64, 65, 82, 95, 107, 129, 143, 156, 186, 203, 235, 267, 295, 334, 372, 415, 466, 514, 581, 637, 707, 783, 859, 960, 1055, 1152, 1281, 1390, 1522, 1679, 1824, 2011, 2190, 2377, 2595, 2816, 3059, 3342, 3616, 3940
Offset: 0

Views

Author

N. J. A. Sloane, Mar 08 2003

Keywords

Crossrefs

Programs

  • Haskell
    a080739 n k = a080739_list !! n
    a080739_list = map length a080738_tabf  -- Reinhard Zumkeller, Jun 13 2012

Extensions

More terms from Devin Kilminster (devin(AT)maths.uwa.edu.au), Mar 10 2003

A080742 Largest element of n-th row of A080738.

Original entry on oeis.org

2, 6, 12, 30, 60, 120, 210, 420, 840, 1260, 2520, 2310, 5040, 9240, 13860, 27720, 32760, 55440, 65520, 120120, 180180, 360360, 235620, 720720, 556920, 942480, 1113840, 1531530
Offset: 0

Views

Author

N. J. A. Sloane, Mar 08 2003

Keywords

Crossrefs

Programs

  • Haskell
    a080742 n k = a080742_list !! n
    a080742_list = map last a080738_tabf  -- Reinhard Zumkeller, Jun 13 2012
  • Mathematica
    a080737[1] = a080737[2] = 0; a080737[p_?PrimeQ] := a080737[p] = p - 1; a080737[n_] := a080737[n] = If[Length[fi = FactorInteger[n]] == 1, EulerPhi[n], Total[a080737 /@ (fi[[All, 1]]^fi[[All, 2]])]]; orders = Table[{n, a080737[n]}, {n, 1, 2*10^6}]; row[0] = {1, 2}; row[n_] := Select[orders, 2*n - 1 <= #[[2]] <= 2*n &][[All, 1]]; Table[ row[n] // Last, {n, 0, 27}] (* Jean-François Alcover, Jul 24 2013 *)

Extensions

Corrected and extended by Vladeta Jovovic, Mar 09 2003

A080741 Smallest element of n-th row of A080738.

Original entry on oeis.org

1, 3, 5, 7, 16, 11, 13, 39, 17, 19, 25, 23, 69, 115, 29, 31, 64, 155, 37, 111, 41, 43, 129, 47, 141, 235, 53, 81, 265, 59, 61, 183, 128, 67, 201, 71, 73, 219, 365, 79, 237, 83, 249, 415, 89, 267, 445, 623, 97, 291, 101, 103, 309, 107, 109, 121, 113, 339, 565, 791, 1417
Offset: 0

Views

Author

N. J. A. Sloane, Mar 08 2003

Keywords

Crossrefs

Programs

  • Haskell
    a080741 n k = a080741_list !! n
    a080741_list = map head a080738_tabf  -- Reinhard Zumkeller, Jun 13 2012

Extensions

More terms from Vladeta Jovovic, Mar 09 2003

A080737 a(1) = a(2) = 0; for n > 2, the least dimension of a lattice possessing a symmetry of order n.

Original entry on oeis.org

0, 0, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 6, 8, 16, 6, 18, 6, 8, 10, 22, 6, 20, 12, 18, 8, 28, 6, 30, 16, 12, 16, 10, 8, 36, 18, 14, 8, 40, 8, 42, 12, 10, 22, 46, 10, 42, 20, 18, 14, 52, 18, 14, 10, 20, 28, 58, 8, 60, 30, 12, 32, 16, 12, 66, 18, 24, 10, 70, 10, 72, 36, 22, 20, 16, 14
Offset: 1

Views

Author

N. J. A. Sloane, Mar 08 2003

Keywords

Crossrefs

See A152455 for another version.

Programs

  • Haskell
    a080737 n = a080737_list !! (n-1)
    a080737_list = 0 : (map f [2..]) where
    f n | mod n 4 == 2 = a080737 $ div n 2
    | otherwise = a067240 n
    -- Reinhard Zumkeller, Jun 13 2012, Jun 11 2012
  • Mathematica
    a[1] = a[2] = 0; a[p_?PrimeQ] := a[p] = p-1; a[n_] := a[n] = If[Length[fi = FactorInteger[n]] == 1, EulerPhi[n], Total[a /@ (fi[[All, 1]]^fi[[All, 2]])]]; Table[a[n], {n, 1, 78}] (* Jean-François Alcover, Jun 20 2012 *)
  • PARI
    for(n=1,78,k=0; if(n>1,f=factor(n); k=sum(j=1,matsize(f)[1],eulerphi(f[j,1]^f[j,2])); if(f[1,1]==2&&f[1,2]==1,k--)); print1(k,",")) \\ Klaus Brockhaus, Mar 10 2003
    

Formula

For n > 2, a(2^r) = 2^(r-1) with r>1, a(p^r) = phi(p^r) with p > 2 prime, r >= 1, where phi is Euler's function A000010; in general if a(Product p_i^e_i) = Sum a(p_i^e_i).

Extensions

More terms from Klaus Brockhaus, Mar 10 2003

A080740 a(n) = number of m such that A080737(m) <= 2n.

Original entry on oeis.org

2, 5, 9, 17, 24, 35, 48, 62, 82, 108, 138, 180, 223, 272, 336, 401, 483, 578, 685, 814, 957, 1113, 1299, 1502, 1737, 2004, 2299, 2633, 3005, 3420, 3886, 4400, 4981, 5618, 6325, 7108, 7967, 8927, 9982, 11134, 12415, 13805, 15327, 17006, 18830, 20841
Offset: 0

Views

Author

N. J. A. Sloane, Mar 08 2003

Keywords

Comments

Total number of elements in first n rows of A080738.

Crossrefs

Partial sums of A080739.

Programs

  • Haskell
    a080740 n k = a080740_list !! n
    a080740_list = scanl1 (+) a080739_list  -- Reinhard Zumkeller, Jun 13 2012

Extensions

More terms from Devin Kilminster (devin(AT)maths.uwa.edu.au), Mar 10 2003

A004031 Number of n-dimensional crystal systems.

Original entry on oeis.org

1, 1, 4, 7, 33, 59, 251
Offset: 0

Views

Author

Keywords

Comments

From Andrey Zabolotskiy, Jul 12 2017: (Start)
From Souvignier (2003): "the unions of all geometric classes intersecting the same set of Bravais flocks is defined to be a crystal system or point-group system. <...> This means that two geometric classes belong to the same crystal system if for any representative of the first class there is a representative of the other class such that the representatives have GL(n,Q)-conjugate Bravais groups. <...> The definition for crystal systems as given by Brown et al. (1978) therefore is only valid in dimensions up to 4, where it coincides with the more general definition adopted here."
For dimension 6, Souvignier (2003) uses old incorrect CARAT data, but the error affected only geometric classes and finer classification, so the data for crystal systems must be correct.
Among 33 4-dimensional crystal systems, 7 are enantiomorphic.
Coincides with the number of n-dimensional Bravais systems for n<5 (only).
(End)

References

  • P. Engel, "Geometric crystallography," in P. M. Gruber and J. M. Wills, editors, Handbook of Convex Geometry. North-Holland, Amsterdam, Vol. B, pp. 989-1041.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

a(5)-a(6) from Souvignier (2003) by Andrey Zabolotskiy, Jul 12 2017

A180042 The possible orders of cyclic groups that can be realized as holonomy groups of crystallographic groups in dimension 7.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 18, 20, 24, 30
Offset: 1

Views

Author

Jonathan Vos Post, Jan 14 2011

Keywords

Comments

In Lutowski's article the CARAT system is used to calculate a list of all isomorphism classes of 7-dimensional Bieberbach groups with cyclic holonomy group. The final list of 316 groups is presented on the undated link by the same author.
Sorted union of first floor(7/2)+1 = 4 rows of A080738. - Andrey Zabolotskiy, Jul 10 2017
Showing 1-7 of 7 results.