A080754 a(n) = ceiling(n*(1+sqrt(2))).
3, 5, 8, 10, 13, 15, 17, 20, 22, 25, 27, 29, 32, 34, 37, 39, 42, 44, 46, 49, 51, 54, 56, 58, 61, 63, 66, 68, 71, 73, 75, 78, 80, 83, 85, 87, 90, 92, 95, 97, 99, 102, 104, 107, 109, 112, 114, 116, 119, 121, 124, 126, 128, 131, 133, 136, 138, 141, 143, 145
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- Benoit Cloitre, A study of a family of self-referential sequences, arXiv:2506.18103 [math.GM], 2025. See p. 7.
- Benoit Cloitre, N. J. A. Sloane, and Matthew J. Vandermast, Numerical analogues of Aronson's sequence, J. Integer Seqs., Vol. 6 (2003), #03.2.2.
- Benoit Cloitre, N. J. A. Sloane, and Matthew J. Vandermast, Numerical analogues of Aronson's sequence, arXiv:math/0305308 [math.NT], 2003.
- Luke Schaeffer, Jeffrey Shallit, and Stefan Zorcic, Beatty Sequences for a Quadratic Irrational: Decidability and Applications, arXiv:2402.08331 [math.NT], 2024. See pp. 17-19.
Programs
-
Magma
[Ceiling(n*(1+Sqrt(2))): n in [1..30]]; // G. C. Greubel, Nov 28 2017
-
Mathematica
Table[Ceiling[n*(1 + Sqrt[2])], {n, 1, 50}] (* G. C. Greubel, Nov 28 2017 *)
-
PARI
for(n=1,30, print1(ceil(n*(1+sqrt(2))), ", ")) \\ G. C. Greubel, Nov 28 2017
Formula
a(1) = 3; for n>1, a(n) = a(n-1) + 3 if n is in sequence, a(n) = a(n-1) + 2 if not.
Extensions
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 08 2007
Comments