A080765 Integers m such that m+1 divides lcm(1 through m).
5, 9, 11, 13, 14, 17, 19, 20, 21, 23, 25, 27, 29, 32, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 47, 49, 50, 51, 53, 54, 55, 56, 57, 59, 61, 62, 64, 65, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 81, 83, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 97, 98, 99, 101, 103, 104, 105, 107
Offset: 1
Examples
17 is the sequence because lcm(1,2,...,17)=12252240 and 17+1=18 divides 12252240.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
- Andrei Asinowski, Cyril Banderier, Benjamin Hackl, Flip-sort and combinatorial aspects of pop-stack sorting, arXiv:2003.04912 [math.CO], 2020.
Crossrefs
Cf. A003418.
Programs
-
Mathematica
Select[Range[120], Divisible[LCM @@ Range[#], #+1]&] (* Jean-François Alcover, Jun 21 2018 *)
-
PARI
a=1;for(n=1,108,a=lcm(a,n);if(a%(n+1)==0,print1(n,","))) \\ Klaus Brockhaus, Jun 11 2004
-
PARI
first(n) = {my(u = max(2*n, 50), charact = vector(u, i, 1), res = List()); forprime(p = 2, 2*n, for(t = 1, logint(u, p), charact[p^t - 1] = 0)); for(i = 1, u, if(charact[i] == 1, listput(res, i); if(#res >= n, return(res)))); res } \\ David A. Corneth, Aug 30 2019
-
Sage
[x - 1 for x in (1..108) if not is_prime_power(n)] # Peter Luschny, May 23 2013
Formula
a(n) ~ n. - David A. Corneth, Aug 30 2019
Extensions
More terms from Klaus Brockhaus, Jun 11 2004
Comments