A085656
Number of positive-definite real {0,1} n X n matrices.
Original entry on oeis.org
1, 3, 27, 681, 43369, 6184475, 1688686483, 665444089745
Offset: 1
For n = 2 the three matrices are {{{1, 0}, {0, 1}}, {{1, 0}, {1, 1}}, {{1, 1}, {0, 1}}}.
Cf.
A055165, which counts nonsingular {0, 1} matrices and
A085506, which counts {-1, 0, 1} matrices with positive eigenvalues.
-
Table[Count[Tuples[{0, 1}, {n, n}], ?PositiveDefiniteMatrixQ], {n, 4}] (* _Eric W. Weisstein, Jan 03 2021 *)
-
{ a(n) = M=matrix(n,n,i,j,2*(i==j)); r=0; b(1); r } { b(k) = local(t); if(k>n, t=0; for(i=1,n, for(j=1,i-1, if(M[i,j]==1,t++); )); r+=2^t; return; ); forvec(x=vector(k-1,i,[0,1]), for(i=1,k-1,M[k,i]=M[i,k]=x[i]); if( matdet(vecextract(M,2^k-1,2^k-1),1)>0, b(k+1) ) ) } (Alekseyev)
A085658
Number of n X n symmetric positive semi-definite matrices with 2's on the main diagonal and 1's and 0's elsewhere.
Original entry on oeis.org
1, 2, 8, 64, 924, 21737, 749684, 33568376
Offset: 1
The matrix
2 0 0 0 1
0 2 0 1 1
0 0 2 1 1
0 1 1 2 0
1 1 1 0 2
is one of the 100 5 X 5 matrices which are not positive semi-definite.
Its eigenvalues are approximately [2., -0.135779205069857, 4.135779205069857, 1.337846553138044, 2.662153446861956]
A085657
Number of n X n symmetric positive definite matrices with 2's on the main diagonal and 1's and 0's elsewhere.
Original entry on oeis.org
1, 2, 8, 61, 819, 17417, 506609, 15582436
Offset: 1
The singular matrix
2 0 1 1
0 2 1 1
1 1 2 0
1 1 0 2
is one of the three 4 X 4 matrices which are not positive definite.
-
{ a(n) = M=matrix(n,n,i,j,2*(i==j)); r=0; b(1); r } { b(k) = if(k>n, r++; return); forvec(x=vector(k-1,i,[0,1]), for(i=1,k-1,M[k,i]=M[i,k]=x[i]); if( matdet(vecextract(M,2^k-1,2^k-1),1)>0, b(k+1) ) ) } (Max Alekseyev)
A038379
Number of real {0,1} n X n matrices A such that M = A + A' has 2's on the main diagonal, 0's and 1's elsewhere and is positive semi-definite.
Original entry on oeis.org
1, 3, 27, 729, 52649, 9058475, 3383769523, 2520512534065
Offset: 1
Cf.
A055165, which counts nonsingular {0, 1} matrices,
A003024, which counts {0, 1} matrices with positive eigenvalues,
A085656 (positive definite matrices).
Definition corrected Nov 10 2006
A084552
Number of n X n symmetric positive definite matrices with 2's on the main diagonal and -1's and 0's elsewhere.
Original entry on oeis.org
1, 2, 7, 38, 286, 2686, 28512, 312572, 3337588, 40963216
Offset: 1
The singular matrix
2 -1 -1
-1 2 -1
-1 -1 2
is the only 3 X 3 matrix of this type which is not positive definite.
A084553
Number of n X n symmetric positive semi-definite matrices with 2's on the main diagonal and -1's and 0's elsewhere.
Original entry on oeis.org
1, 2, 8, 45, 338, 3178, 34346, 396659, 4694705
Offset: 1
The 5 X 5 matrix
2 -1 -1 -1 -1
-1 2 -1 -1 -1
-1 -1 2 -1 -1
-1 -1 -1 2 -1
-1 -1 -1 -1 2
with eigenvalues -2, 3, 3, 3, 3 is an example of one which is not positive semi-definite.
A127502
Number of n X n positive definite matrices with 1's on the main diagonal and -1's and 0's elsewhere.
Original entry on oeis.org
1, 3, 19, 201, 3001, 55291, 1115003, 21837649, 373215601, 8282131891
Offset: 1
For n = 2 the three matrices are {{{1, 0}, {0, 1}}, {{1, 0}, {-1, 1}}, {{1, -1}, {0, 1}}}.
-
{ a(n) = M=matrix(n,n,i,j,2*(i==j)); r=0; b(1); r } { b(k) = local(t); if(k> n, t=0; for(i=1,n, for(j=1,i-1, if(M[i,j]==1,t++); )); r+=2^t; return; ); forvec(x=vector(k-1,i,[ -1,0]), for(i=1,k-1,M[k,i]=M[i,k]=x[i]); if( matdet(vecextract(M,2^k-1,2^k-1),1)>0, b(k+1) ) ) } (Alekseyev)
A127503
Number of n X n matrices A with 1's on the main diagonal and -1's and 0's elsewhere such that A + A' has only 0's and -1's off the main diagonal and is positive semi-definite.
Original entry on oeis.org
1, 3, 27, 281, 3945, 70635, 1437555, 30357425, 628337745
Offset: 1
Showing 1-8 of 8 results.
Comments