cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A003024 Number of acyclic digraphs (or DAGs) with n labeled nodes.

Original entry on oeis.org

1, 1, 3, 25, 543, 29281, 3781503, 1138779265, 783702329343, 1213442454842881, 4175098976430598143, 31603459396418917607425, 521939651343829405020504063, 18676600744432035186664816926721, 1439428141044398334941790719839535103, 237725265553410354992180218286376719253505
Offset: 0

Views

Author

Keywords

Comments

Also the number of n X n real (0,1)-matrices with all eigenvalues positive. - Conjectured by Eric W. Weisstein, Jul 10 2003 and proved by McKay et al. 2003, 2004
Also the number of n X n real (0,1)-matrices with permanent equal to 1, up to permutation of rows/columns, cf. A089482. - Vladeta Jovovic, Oct 28 2009
Also the number of nilpotent elements in the semigroup of binary relations on [n]. - Geoffrey Critzer, May 26 2022
From Gus Wiseman, Jan 01 2024: (Start)
Also the number of sets of n nonempty subsets of {1..n} such that there is a unique way to choose a different element from each. For example, non-isomorphic representatives of the a(3) = 25 set-systems are:
{{1},{2},{3}}
{{1},{2},{1,3}}
{{1},{2},{1,2,3}}
{{1},{1,2},{1,3}}
{{1},{1,2},{2,3}}
{{1},{1,2},{1,2,3}}
These set-systems have ranks A367908, subset of A367906, for multisets A368101.
The version for no ways is A368600, any length A367903, ranks A367907.
The version for at least one way is A368601, any length A367902.
(End)

Examples

			For n = 2 the three (0,1)-matrices are {{{1, 0}, {0, 1}}, {{1, 0}, {1, 1}}, {{1, 1}, {0, 1}}}.
		

References

  • Archer, K., Gessel, I. M., Graves, C., & Liang, X. (2020). Counting acyclic and strong digraphs by descents. Discrete Mathematics, 343(11), 112041.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, p. 310.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 19, Eq. (1.6.1).
  • R. W. Robinson, Counting labeled acyclic digraphs, pp. 239-273 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P Stanley, Enumerative Combinatorics I, 2nd. ed., p. 322.

Crossrefs

Cf. A086510, A081064 (refined by # arcs), A307049 (by # descents).
Cf. A055165, which counts nonsingular {0, 1} matrices and A085656, which counts positive definite {0, 1} matrices.
Cf. A188457, A135079, A137435 (acyclic 3-multidigraphs), A188490.
For a unique sink we have A003025.
The unlabeled version is A003087.
These are the reverse-alternating sums of rows of A046860.
The weakly connected case is A082402.
A reciprocal version is A334282.
Row sums of A361718.

Programs

  • Maple
    p:=evalf(solve(sum((-1)^n*x^n/(n!*2^(n*(n-1)/2)), n=0..infinity) = 0, x), 50); M:=evalf(sum((-1)^(n+1)*p^n/((n-1)!*2^(n*(n-1)/2)), n=1..infinity), 40); # program for evaluation of constants p and M in the asymptotic formula, Vaclav Kotesovec, Dec 09 2013
  • Mathematica
    a[0] = a[1] = 1; a[n_] := a[n] = Sum[ -(-1)^k * Binomial[n, k] * 2^(k*(n-k)) * a[n-k], {k, 1, n}]; Table[a[n], {n, 0, 13}](* Jean-François Alcover, May 21 2012, after PARI *)
    Table[2^(n*(n-1)/2)*n! * SeriesCoefficient[1/Sum[(-1)^k*x^k/k!/2^(k*(k-1)/2),{k,0,n}],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, May 19 2015 *)
    Table[Length[Select[Subsets[Subsets[Range[n]],{n}],Length[Select[Tuples[#],UnsameQ@@#&]]==1&]],{n,0,5}] (* Gus Wiseman, Jan 01 2024 *)
  • PARI
    a(n)=if(n<1,n==0,sum(k=1,n,-(-1)^k*binomial(n,k)*2^(k*(n-k))*a(n-k)))
    
  • PARI
    {a(n)=polcoeff(1-sum(k=0, n-1, a(k)*x^k/(1+2^k*x+x*O(x^n))^(k+1)), n)} \\ Paul D. Hanna, Oct 17 2009

Formula

a(0) = 1; for n > 0, a(n) = Sum_{k=1..n} (-1)^(k+1)*C(n, k)*2^(k*(n-k))*a(n-k).
1 = Sum_{n>=0} a(n)*exp(-2^n*x)*x^n/n!. - Vladeta Jovovic, Jun 05 2005
a(n) = Sum_{k=1..n} (-1)^(n-k)*A046860(n,k) = Sum_{k=1..n} (-1)^(n-k)*k!*A058843(n,k). - Vladeta Jovovic, Jun 20 2008
1 = Sum_{n=>0} a(n)*x^n/(1 + 2^n*x)^(n+1). - Paul D. Hanna, Oct 17 2009
1 = Sum_{n>=0} a(n)*C(n+m-1,n)*x^n/(1 + 2^n*x)^(n+m) for m>=1. - Paul D. Hanna, Apr 01 2011
log(1+x) = Sum_{n>=1} a(n)*(x^n/n)/(1 + 2^n*x)^n. - Paul D. Hanna, Apr 01 2011
Let E(x) = Sum_{n >= 0} x^n/(n!*2^C(n,2)). Then a generating function for this sequence is 1/E(-x) = Sum_{n >= 0} a(n)*x^n/(n!*2^C(n,2)) = 1 + x + 3*x^2/(2!*2) + 25*x^3/(3!*2^3) + 543*x^4/(4!*2^6) + ... (Stanley). Cf. A188457. - Peter Bala, Apr 01 2013
a(n) ~ n!*2^(n*(n-1)/2)/(M*p^n), where p = 1.488078545599710294656246... is the root of the equation Sum_{n>=0} (-1)^n*p^n/(n!*2^(n*(n-1)/2)) = 0, and M = Sum_{n>=1} (-1)^(n+1)*p^n/((n-1)!*2^(n*(n-1)/2)) = 0.57436237330931147691667... Both references to the article "Acyclic digraphs and eigenvalues of (0,1)-matrices" give the wrong value M=0.474! - Vaclav Kotesovec, Dec 09 2013 [Response from N. J. A. Sloane, Dec 11 2013: The value 0.474 has a typo, it should have been 0.574. The value was taken from Stanley's 1973 paper.]
exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 2*x^2 + 10*x^3 + 146*x^4 + 6010*x^5 + ... appears to have integer coefficients (cf. A188490). - Peter Bala, Jan 14 2016

A080858 Triangle read by rows: T(n,k), n >=1, 0 <= k <= C(n,k), = number of n X n symmetric positive definite matrices with 2's on the main diagonal and 1's and 0's elsewhere and with k 1's above the diagonal.

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 1, 1, 6, 15, 20, 12, 6, 1, 1, 10, 45, 120, 190, 192, 140, 80, 30, 10, 1, 1, 15, 105, 455, 1290, 2382, 3385, 3195, 2880, 1860, 1098, 435, 240, 60, 15, 1, 1, 21, 210, 1330, 5775, 17157, 36092, 60210, 75075, 87185, 68775, 64470, 38395, 26355, 13125, 7987, 2394, 1365, 560, 105, 21, 1, 1, 28, 378, 3276, 19985, 86772, 265286, 595136, 1104642, 1499680, 2036412, 2057496, 2115855, 1729672, 1508580, 912128, 755300, 378336, 260848, 120120, 80388, 26384, 16856, 4200, 3640, 840, 168, 28, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jul 13 2003

Keywords

Examples

			1;
1,1;
1,3,3,1;
1,6,15,20,12,6,1;
...
		

Crossrefs

Rows sums give A085657.
A085656(n) = Sum_{k=0..C(n,2)} 2^k * T(n,k).

Extensions

Rows n=6..8 added by Max Alekseyev, Jun 04 2024

A085657 Number of n X n symmetric positive definite matrices with 2's on the main diagonal and 1's and 0's elsewhere.

Original entry on oeis.org

1, 2, 8, 61, 819, 17417, 506609, 15582436
Offset: 1

Views

Author

N. J. A. Sloane, Jul 12 2003

Keywords

Comments

Of course the total number of symmetric matrices of this type (not necessarily positive definite) is 2^C(n,2).
This gives the number of different values of A + A' where A runs through the matrices counted in A085656. - Max Alekseyev, Dec 13 2005

Examples

			The singular matrix
2 0 1 1
0 2 1 1
1 1 2 0
1 1 0 2
is one of the three 4 X 4 matrices which are not positive definite.
		

Crossrefs

Programs

  • PARI
    { a(n) = M=matrix(n,n,i,j,2*(i==j)); r=0; b(1); r } { b(k) = if(k>n, r++; return); forvec(x=vector(k-1,i,[0,1]), for(i=1,k-1,M[k,i]=M[i,k]=x[i]); if( matdet(vecextract(M,2^k-1,2^k-1),1)>0, b(k+1) ) ) } (Max Alekseyev)

Extensions

More terms from Max Alekseyev, Dec 13 2005

A038379 Number of real {0,1} n X n matrices A such that M = A + A' has 2's on the main diagonal, 0's and 1's elsewhere and is positive semi-definite.

Original entry on oeis.org

1, 3, 27, 729, 52649, 9058475, 3383769523, 2520512534065
Offset: 1

Views

Author

N. J. A. Sloane, Jul 13 2003

Keywords

Comments

Necessarily A has all 1's on the main diagonal.
A real matrix M is positive semi-definite if its eigenvalues are >= 0.
For n <= 4, a(n) equals the upper bound 3^C(n,2).
For the number of different values of symmetric parts A + A', see A085658. - Max Alekseyev, Nov 11 2006

Crossrefs

Cf. A055165, which counts nonsingular {0, 1} matrices, A003024, which counts {0, 1} matrices with positive eigenvalues, A085656 (positive definite matrices).

Formula

a(n) = Sum_{k=0..C(n,2)} 2^k * A083029(n,k).

Extensions

Definition corrected Nov 10 2006
a(6)-a(8) from Max Alekseyev, Nov 11 2006
Edited by Max Alekseyev, Jun 05 2024

A086510 Number of n X n real (0,1)-matrices with all eigenvalues >= 0.

Original entry on oeis.org

1, 2, 13, 261, 15418, 2566333
Offset: 0

Views

Author

Frederique Oggier (frederique.oggier(AT)epfl.ch) and N. J. A. Sloane, Sep 10 2003

Keywords

Examples

			a(2)=13 because only 3 of the 16 possible matrices have eigenvalues < 0:
.
  0  1
  1  0
  with eigenvalues {1,-1}
and
  1 1
  1 0
.
  0 1
  1 1
  both with eigenvalues {1.61803..(Golden ratio),-0.61803...}
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := Module[{M, iter, cnt = 0}, M = Table[a[i, j], {i, 1, n}, {j, 1, n}]; iter = Thread[{Flatten[M], 0, 1}]; Do[If[AllTrue[Eigenvalues[ M], NonNegative], cnt++], Evaluate[Sequence @@ iter]]; cnt];
    Do[Print[n, " ", a[n]], {n, 0, 5}] (* Jean-François Alcover, Dec 09 2018 *)

Extensions

a(5) from Hugo Pfoertner, Sep 26 2017

A086215 Number of (-1,0,1) n X n matrices M that are positive definite.

Original entry on oeis.org

1, 7, 311, 79505, 105311665, 642005451319, 15477341239385927
Offset: 1

Views

Author

Eric W. Weisstein, Jul 12 2003

Keywords

Comments

M need not be symmetric. For the number of different values of M + M' see A114601. - Max Alekseyev, Dec 13 2005

Crossrefs

Programs

  • Mathematica
    Table[Count[Tuples[{-1, 0, 1}, {n, n}], ?PositiveDefiniteMatrixQ], {n, 3}] (* _Eric W. Weisstein, Jan 03 2021 *)
  • PARI
    { a(n) = M=matrix(n,n,i,j,2*(i==j)); r=0; b(1); r } { b(k) = local(z,t); if(k>n, z=t=0; for(i=1,n, for(j=1,i-1, if(M[ i,j ]==0,z++); if(abs(M[ i, j ])==1,t++); )); r+=3^z*2^t; return; ); forvec(x=vector(k-1,i,[ -1,1 ]), for(i=1,k-1,M[ k,i ]=M[ i,k ]=x[ i ]); if( matdet(vecextract(M,2^k-1, 2^k-1),1)>0, b(k+1) ) ) } /* Max Alekseyev */

Extensions

a(4) from Wouter Meeussen, Sep 05 2003
a(5)-a(6) from Max Alekseyev, Dec 13 2005
a(7) from Max Alekseyev, Nov 09 2006

A098148 Number of real (0,1) n X n matrices such that some eigenvalues are strictly complex.

Original entry on oeis.org

0, 0, 52, 22196, 21005094
Offset: 1

Views

Author

Hugo Pfoertner, Sep 07 2004

Keywords

Examples

			The 3 X 3 matrix ((0,1,0),(0,0,1),(1,1,1)) has real eigenvalue 1.83929 and the complex pair -0.41964+-0.60629*i. There are 12 (0,1) 3 X 3 matrices with these eigenvalues. There are 6 groups of 6 matrices having eigenvalues (1.3472,-0.66236+-0.56228*i), (1.46557,-0.23279+-0.79255*i),..., (2.32472,0.33764+-0.56228*i). Two matrices (e.g. ((0,0,1),(1,0,0),(0,1,0)) ) have eigenvalues (1,-0.5+-0.5*sqrt(3)*i). Two matrices (e.g. ((1,1,0),(0,1,1),(1,0,1)) ) have eigenvalues (2,0.5+-0.5*sqrt(3)*i). Total: 12+6*6+2+2=52=a(3).
		

Crossrefs

Cf. other counts for (0, 1) matrices: A003024 (positive eigenvalues), A055165 (nonsingular), A085656 (positive definite), A086510 (nonnegative eigenvalues).

Programs

  • Mathematica
    a[n_] := Module[{M, iter, cnt=0}, M = Table[a[i, j], {i, 1, n}, {j, 1, n}]; iter = Thread[{Flatten[M], 0, 1}]; Do[If[AnyTrue[Eigenvalues[M], Im[#] != 0&], cnt++], Evaluate[Sequence @@ iter]]; cnt];
    Do[Print[n, " ", a[n]], {n, 1, 4}] (* Jean-François Alcover, Dec 09 2018 *)

Extensions

a(5) corrected by Hugo Pfoertner, Sep 26 2017

A127502 Number of n X n positive definite matrices with 1's on the main diagonal and -1's and 0's elsewhere.

Original entry on oeis.org

1, 3, 19, 201, 3001, 55291, 1115003, 21837649, 373215601, 8282131891
Offset: 1

Views

Author

Max Alekseyev, Jan 16 2007

Keywords

Comments

A real matrix M is positive-definite if x M x' > 0 for all nonzero real vectors x. Equivalently, all eigenvalues of M + M' are positive.
M need not be symmetric. For the number of different values of M + M' see A084552.

Examples

			For n = 2 the three matrices are {{{1, 0}, {0, 1}}, {{1, 0}, {-1, 1}}, {{1, -1}, {0, 1}}}.
		

Crossrefs

Programs

  • PARI
    { a(n) = M=matrix(n,n,i,j,2*(i==j)); r=0; b(1); r } { b(k) = local(t); if(k> n, t=0; for(i=1,n, for(j=1,i-1, if(M[i,j]==1,t++); )); r+=2^t; return; ); forvec(x=vector(k-1,i,[ -1,0]), for(i=1,k-1,M[k,i]=M[i,k]=x[i]); if( matdet(vecextract(M,2^k-1,2^k-1),1)>0, b(k+1) ) ) } (Alekseyev)

A087488 Number of n X n (-1,1)-matrices with all eigenvalues >= 0.

Original entry on oeis.org

1, 1, 6, 64, 4744, 536736
Offset: 0

Views

Author

Frederique Oggier (frederique.oggier(AT)epfl.ch) and N. J. A. Sloane, Oct 24 2003

Keywords

Examples

			For n = 2 the six matrices are (+ means +1, - means -1):
++ +- -- -+ +- ++
-- +- ++ -+ -+ ++
with eigenvalues
00 00 00 00 20 20 respectively.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Select[Partition[#, n] & /@ Tuples[{-1, 1}, {n^2}], AllTrue[ Eigenvalues[#], NonNegative]&] // Length; a[0] = 1;
    Do[Print[n, " ", a[n]], {n, 0, 5}] (* Jean-François Alcover, Feb 13 2019 *)

Extensions

a(5) from Jean-François Alcover, Feb 13 2019
Showing 1-9 of 9 results.