cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080875 a(n)*a(n+3) - a(n+1)*a(n+2) = 5, given a(0)=a(1)=1, a(2)=6.

Original entry on oeis.org

1, 1, 6, 11, 71, 131, 846, 1561, 10081, 18601, 120126, 221651, 1431431, 2641211, 17057046, 31472881, 203253121, 375033361, 2421980406, 4468927451, 28860511751, 53252096051, 343904160606, 634556225161, 4097989415521
Offset: 0

Views

Author

Paul D. Hanna, Feb 22 2003

Keywords

Crossrefs

Bisections are A023038 and A077417.

Programs

  • Mathematica
    LinearRecurrence[{0,12,0,-1},{1,1,6,11},30] (* Harvey P. Dale, Jul 14 2024 *)

Formula

G.f.: (-x^3 - 6*x^2 + x + 1)/(x^4 - 12*x^2 + 1).
a(n+4) = 12*a(n+2)-a(n). [Richard Choulet, Dec 04 2008]
a(n) = (1/4 + ((sqrt(6 + sqrt(35)) - sqrt(6 - sqrt(35)))/(4*sqrt(35))))*(sqrt(6 + sqrt(35)))^n + (1/4 + ((sqrt(6 + sqrt(35)) - sqrt(6 - sqrt(35)))/(4*sqrt(35))))*(sqrt(6 - sqrt(35)))^n + (1/4 - ((sqrt(6 + sqrt(35)) - sqrt(6 - sqrt(35)))/(4*sqrt(35))))*( - sqrt(6 + sqrt(35)))^n + (1/4 - ((sqrt(6 + sqrt(35)) - sqrt(6 - sqrt(35)))/(4*sqrt(35))))*( - (sqrt(6 - sqrt(35))))^n. [Richard Choulet, Dec 06 2008]