cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080877 a(n)*a(n+3) - a(n+1)*a(n+2) = 2^n, given a(0)=1, a(1)=1, a(2)=2.

Original entry on oeis.org

1, 1, 2, 3, 8, 14, 40, 72, 208, 376, 1088, 1968, 5696, 10304, 29824, 53952, 156160, 282496, 817664, 1479168, 4281344, 7745024, 22417408, 40553472, 117379072, 212340736, 614604800, 1111830528, 3218112512, 5821620224, 16850255872
Offset: 0

Views

Author

Paul D. Hanna, Feb 22 2003

Keywords

Crossrefs

Cf. A154626, A098648 (bisections). [From R. J. Mathar, Oct 26 2009]

Programs

  • Mathematica
    LinearRecurrence[{0,6,0,-4},{1,1,2,3},50] (* or *) CoefficientList[ Series[ (-3x^3-4x^2+x+1)/(4x^4-6x^2+1),{x,0,50}],x] (* Harvey P. Dale, May 02 2011 *)

Formula

G.f.: (-3*x^3 - 4*x^2 + x + 1)/(4*x^4 - 6*x^2 + 1)
a(n + 4) = 6*a(n + 2) - 4*a(n) [From Richard Choulet, Dec 06 2008]
a(n) = ( - 1/20*5^(1/2) + 1/16*5^(1/2)*2^(1/2) - 1/16*2^(1/2) + 1/4)*(sqrt(3 + sqrt(5)))^n + (1/20*5^(1/2) + 1/16*5^(1/2)*2^(1/2) + 1/16*2^(1/2) + 1/4)*(sqrt(3 - sqrt(5)))^n + ( - 1/20*5^(1/2) - 1/16*5^(1/2)*2^(1/2) + 1/16*2^(1/2) + 1/4)*( - (sqrt(3 + sqrt(5))))^n + (1/20*5^(1/2) - 1/16*5^(1/2)*2^(1/2) - 1/16*2^(1/2) + 1/4)*( - (sqrt(3 - sqrt(5))))^n [From Richard Choulet, Dec 07 2008]