cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080894 Expansion of the exponential series exp( x M(x) ) = exp( (1-sqrt(1-2x-3x^2))/(2x) ), where M(x) is the ordinary generating series of the Motzkin numbers A001006.

Original entry on oeis.org

1, 1, 3, 19, 169, 2001, 29371, 516643, 10590609, 248113729, 6541248691, 191719042131, 6185020391353, 217824649952209, 8316522297035499, 342188317852814371, 15095509523107176481, 710794856254145560833
Offset: 0

Views

Author

Emanuele Munarini, Mar 31 2003

Keywords

Crossrefs

Cf. A001006.

Programs

  • Mathematica
    #/Sqrt[E]&/@With[{nn=20},CoefficientList[Series[Exp[(1-Sqrt[1-2x-3x^2])/ (2x)],{x,0,nn}],x]Range[0,nn]!] (* Harvey P. Dale, Oct 26 2011 *)

Formula

E.g.f.: exp((1 - x - sqrt(1 - 2*x - 3*x^2))/(2x)).
a(n) = (n-1)!*Sum_{k=1..n} (1/(k-1)!)*Sum_{j=ceiling((n+k)/2)..n} binomial(n,j)*binomial(j,2*j-n-k). - Vladimir Kruchinin, Aug 11 2010
a(n) ~ 3^(n+1/2)*n^(n-1)/(sqrt(2)*exp(n-1)). - Vaclav Kotesovec, Oct 05 2013
Conjecture D-finite with recurrence: +(-2*n+3)*a(n) +(-2*n^3+9*n^2-9*n+1)*a(n-1) +(n-1)*(n-2)*(4*n^2-2*n-3)*a(n-2) +3*(n-1)*(n-3)*(2*n-1)*(n-2)^2*a(n-3)=0. - R. J. Mathar, Jan 24 2020