cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080906 Primes with an even number of digits such that the first half of the digits and the second half of the digits are both primes.

Original entry on oeis.org

23, 37, 53, 73, 1103, 1117, 1123, 1129, 1153, 1171, 1303, 1307, 1319, 1361, 1367, 1373, 1723, 1741, 1747, 1753, 1759, 1783, 1789, 1907, 1913, 1931, 1973, 1979, 1997, 2311, 2341, 2347, 2371, 2383, 2389, 2903, 2917, 2953, 2971, 3119, 3137
Offset: 1

Views

Author

P. Giannopoulos (pgiannop1(AT)yahoo.com), Mar 31 2003

Keywords

Comments

The number of terms with 2, 4, 6, ... digits: 4, 92, 3223, 130607, 6350300, ..., . - Robert G. Wilson v, Dec 07 2008

Examples

			23 is a member because 2 and 3 are both primes.
		

References

  • P. Giannopoulos, The brainteasers (unpublished)

Crossrefs

Cf. A000040. - Robert G. Wilson v, Dec 07 2008

Programs

  • Mathematica
    f[n_] := Block[{c = 0, lp = PrimePi[10^n] - PrimePi[10^(n - 1)], lq = PrimePi[10^n], lst = {}, pq, p = Prime@ Range[PrimePi[10^(n - 1)] + 1, PrimePi[10^n]], q = Prime@ Range[1, PrimePi[10^n]]}, Do[pq = p[[i]]*10^n + q[[j]]; If[PrimeQ@ pq, AppendTo[lst, pq]; c++ ], {i, lp}, {j, lq}]; lst]; Array[f, 2] // Flatten (* Robert G. Wilson v, Dec 07 2008 *)
    pQ[n_]:=Module[{idn=IntegerDigits[n],len},len=Length[idn];EvenQ[len] && PrimeQ[FromDigits[Take[idn,len/2]]]&&PrimeQ[FromDigits[Take[idn, -len/2]]]]; Select[Prime[Range[500]],pQ] (* Harvey P. Dale, Nov 08 2011 *)
  • PARI
    t=1; forprime( p=2,99, if( p>t, t*=10); forprime( q=3,t, isprime(p*t+q) & print1(p*t+q,", "))) \\ M. F. Hasler

Extensions

Corrected by Zak Seidov, Robert Israel, Farideh Firoozbakht and M. F. Hasler, Dec 06 2008 and Dec 07 2008
Edited by N. J. A. Sloane, Dec 07 2008