cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A080900 a(1)=1; for n>1, a(n)=a(n-1)-2 if n is already in the sequence, a(n)=a(n-1)+5 otherwise.

Original entry on oeis.org

1, 6, 11, 16, 21, 19, 24, 29, 34, 39, 37, 42, 47, 52, 57, 55, 60, 65, 63, 68, 66, 71, 76, 74, 79, 84, 89, 94, 92, 97, 102, 107, 112, 110, 115, 120, 118, 123, 121, 126, 131, 129, 134, 139, 144, 149, 147, 152, 157, 162, 167, 165, 170, 175, 173, 178, 176
Offset: 1

Views

Author

N. J. A. Sloane and Benoit Cloitre, Apr 01 2003

Keywords

Crossrefs

Cf. A080901 (starting value = 2), A080905 (run lengths of first differences).

Programs

  • Mathematica
    Fold[Append[#1, #1[[-1]] + If[MemberQ[#1, #2], -2, 5]] &, {1}, Range[2, 57]] (* Ivan Neretin, Mar 03 2016 *)
  • PARI
    up_to = 1001;
    A080900list(up_to_n) = { my(xs=Map(), v=vector(up_to_n)); mapput(xs,1,1); v[1] = 1; for(n=2,up_to_n, v[n] = v[n-1]+if(mapisdefined(xs,n), -2, +5); mapput(xs,v[n],n)); (v); };
    v080900 = A080900list(up_to);
    A080900(n) = v080900[n]; \\ Antti Karttunen, Jan 22 2020

Formula

Perhaps this is asymptotic to c_0*n*(1 + c_1/log n + ...), with c_0 near 2 ?

A080853 Square array of generalized polygonal numbers, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 9, 7, 1, 1, 5, 16, 19, 11, 1, 1, 6, 25, 37, 33, 16, 1, 1, 7, 36, 61, 67, 51, 22, 1, 1, 8, 49, 91, 113, 106, 73, 29, 1, 1, 9, 64, 127, 171, 181, 154, 99, 37, 1, 1, 10, 81, 169, 241, 276, 265, 211, 129, 46, 1, 1, 11, 100, 217, 323, 391, 406, 365, 277
Offset: 0

Views

Author

Paul Barry, Feb 23 2003

Keywords

Examples

			Rows begin with n>=0, k>=0
1 1 1 1 1 ...
1 2 4 7 11 ...
1 3 9 19 33 ...
1 4 16 37 67 ...
1 5 25 61 113 ...
		

Crossrefs

Programs

  • Maple
    A080853 := proc(n,k)
        binomial(k,0)+n*binomial(k,1)+n^2*binomial(k,2) ;
    end proc:
    seq( seq(A080853(d-k,k),k=0..d),d=0..12) ; # R. J. Mathar, Oct 01 2021

Formula

T(n, k)=C(k, 0)+C(k, 1)n+C(k, 2)n^2=(n^2*k^2-(n^2-2n)*k+2)/2 =(k(k-1)*n^2+2k*n+2)/2
Row n has g.f. (1+(n-2)x+(n^2-n+1)x^2)/(1-x)^3.
Column k has g.f. (C(k-1, 0)+(C(k+1, 2)-2)*x+C(k-1, 2)*x^2)/(1-x)^3.
Diagonals are given by (n^4+(2k-1)*n^3+((k-1)^2+1)*n^2+(1-(k-1)^2)*n+2)/2.
Antidiagonal sums are 1, 2, 4, 9, 22, 53, 119,... = (d+1)*(2*d^4-7*d^3+27*d^2-22*d+120)/120 = sum_{k=0..d} T(d-k,k), first differences in A116701, d>=0. - R. J. Mathar, Oct 01 2021

A080914 A080900 sorted and duplicates removed.

Original entry on oeis.org

1, 6, 11, 16, 19, 21, 24, 29, 34, 37, 39, 42, 47, 52, 55, 57, 60, 63, 65, 66, 68, 71, 74, 76, 79, 84, 89, 92, 94, 97, 102, 107, 110, 112, 115, 118, 120, 121, 123, 126, 129, 131, 134, 139, 144, 147, 149, 152, 157, 162, 165, 167, 170, 173, 175, 176, 178
Offset: 1

Views

Author

N. J. A. Sloane, Apr 02 2003

Keywords

Crossrefs

Formula

sort -n -u A080900
Showing 1-3 of 3 results.