A080926 Partial sums of A080925.
0, 1, 6, 19, 60, 181, 546, 1639, 4920, 14761, 44286, 132859, 398580, 1195741, 3587226, 10761679, 32285040, 96855121, 290565366, 871696099, 2615088300, 7845264901, 23535794706, 70607384119, 211822152360, 635466457081
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Wolfdieter Lang, Notes on certain inhomogeneous three term recurrences. [_Wolfdieter Lang_, Oct 18 2010]
- Index entries for linear recurrences with constant coefficients, signature (3,1,-3).
Programs
-
Magma
[(3*3^n+(-1)^n)/4-1: n in [0..30]]; // Vincenzo Librandi, Aug 06 2013
-
Maple
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=2*a[n-1]+3*a[n-2]+4 od: seq(a[n], n=0..33); # Zerinvary Lajos, Dec 14 2008
-
Mathematica
CoefficientList[Series[x (1 + 3 x) / ((1 + x) (1 - x) (1 - 3 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 06 2013 *) LinearRecurrence[{3,1,-3},{0,1,6},30] (* Harvey P. Dale, Oct 02 2018 *)
Formula
a(n) = Sum{i=0..n, Sum{k=1..i, Binomial(i, 2k-2)2^(2k-2)}}
G.f.: x*(1+3*x)/((1+x)*(1-x)*(1-3x)).
E.g.f.: (3*exp(3x)+exp(-x))/4-exp(x).
a(n) = (3*3^n+(-1)^n)/4-1.
a(n) = 3*a(n-1) + a(n-2) - 3*a(n-3) for n>2, a(0)=0, a(1)=1, a(2)=6. Observation by G. Detlefs. See my comment and link. [Wolfdieter Lang, Oct 18 2010]
Comments