A081066 Even order Taylor expansion coefficients at x=0 of exp(exp(x^2/2)-1), odd order coefficients being equal to zero.
1, 1, 6, 75, 1575, 49140, 2110185, 118513395, 8391883500, 728713460475, 75932204473125, 9329869676877750, 1332483237190430325, 218552871240812233125, 40748996386059790578750
Offset: 0
Keywords
References
- S. Covo, The moments of a compound Poisson process with exponential or centered normal jumps, J. Probab. Stat. Sci. 7 (2009), 91-100. [From Shai Covo (green355(AT)netvision.net.il), Feb 03 2010]
Links
- Franklin T. Adams-Watters, Jun 18 2008, Table of n, a(n) for n = 0..18
Programs
-
Maple
A055882 := n-> 2^n*combinat[bell](n); A081066 := n-> A055882(n)*pochhammer(1/2,n); seq(A081066(i),i=0..14); # Peter Luschny, Nov 07 2011
-
Mathematica
Table[(2n-1)!!*BellB[n], {n, 0, 14}] (* Jean-François Alcover, May 23 2016, after Vladeta Jovovic *)
Formula
In Maple notation: a(n)=evalf(subs(x=0, diff((exp(exp(x^2/2)-1), x$2*n)))), n=1, 2...
a(n) = (2*n-1)!!*Bell(n). - Vladeta Jovovic, May 19 2007
E.g.f.: A(x) = exp(-1)*Sum_{n>=0} (1-2*n*x)^(-1/2)/n!. - Vladeta Jovovic, Feb 05 2008
a(n) = A055882(n)*Pochhammer(1/2, n). - Peter Luschny, Nov 07 2011
Comments