A140770
3D analog of A081113: the number of (n-1)-step paths a 3D chess king can make starting from one face of the n X n X n cube to the opposite one.
Original entry on oeis.org
1, 16, 289, 4624, 67081, 902500, 11471769, 139570596, 1640493009, 18754206916, 209576262025, 2298031637476, 24798178969729, 263962539461776, 2776718023652329, 28909790108979264, 298278580556192769, 3052900712959977636, 31023767417676585561, 313247762072931012804
Offset: 1
Example: for n=2, we can start from any of the 4 places on one face and move from there directly to any of the 4 positions on the opposite side: a(2) = 4*4 = 16.
A296449
Triangle I(m,n) read by rows: number of perfect lattice paths on the m*n board.
Original entry on oeis.org
1, 2, 4, 3, 7, 17, 4, 10, 26, 68, 5, 13, 35, 95, 259, 6, 16, 44, 122, 340, 950, 7, 19, 53, 149, 421, 1193, 3387, 8, 22, 62, 176, 502, 1436, 4116, 11814, 9, 25, 71, 203, 583, 1679, 4845, 14001, 40503, 10, 28, 80, 230, 664, 1922, 5574, 16188, 47064, 136946, 11, 31, 89, 257, 745, 2165, 6303, 18375, 53625, 156629, 457795
Offset: 1
Triangle begins:
1;
2, 4;
3, 7, 17;
4, 10, 26, 68;
5, 13, 35, 95, 259;
6, 16, 44, 122, 340, 950;
7, 19, 53, 149, 421, 1193, 3387;
8, 22, 62, 176, 502, 1436, 4116, 11814;
9, 25, 71, 203, 583, 1679, 4845, 14001, 40503;
10, 28, 80, 230, 664, 1922, 5574, 16188, 47064, 136946;
-
Inm := proc(n,m)
if m >= n then
(n+2)*3^(n-2)+(m-n)*add(A005773(i)*A005773(n-i),i=0..n-1)
+2*add((n-k-2)*3^(n-k-3)*A001006(k),k=0..n-3) ;
else
0 ;
end if;
end proc:
for m from 1 to 13 do
for n from 1 to m do
printf("%a,",Inm(n,m)) ;
end do:
printf("\n") ;
end do:
# Second program:
A296449row := proc(n) local gf, ser;
gf := n -> 1 + (x*(n - (3*n + 2)*x) + (2*x^2)*(1 +
ChebyshevU(n - 1, (1 - x)/(2*x))) / ChebyshevU(n, (1 - x)/(2*x)))/(1 - 3*x)^2;
ser := n -> series(expand(gf(n)), x, n + 1);
seq(coeff(ser(n), x, k), k = 1..n) end:
for n from 0 to 11 do A296449row(n) od; # Peter Luschny, Sep 07 2021
-
(* b = A005773 *) b[0] = 1; b[n_] := Sum[k/n*Sum[Binomial[n, j] * Binomial[j, 2*j - n - k], {j, 0, n}], {k, 1, n}];
(* c = A001006 *) c[0] = 1; c[n_] := c[n] = c[n-1] + Sum[c[k] * c[n-2-k], {k, 0, n-2}];
Inm[n_, m_] := If[m >= n, (n + 2)*3^(n - 2) + (m - n)*Sum[b[i]*b[n - i], {i, 0, n - 1}] + 2*Sum[(n - k - 2)*3^(n - k - 3)*c[k], {k, 0, n-3}], 0];
Table[Inm[n, m], {m, 1, 13}, {n, 1, m}] // Flatten (* Jean-François Alcover, Jan 23 2018, adapted from first Maple program. *)
A354548
Number of edges in the graph of continuous discrete sections for a trivial bundle in a total space of the fiber bundle of size n.
Original entry on oeis.org
1, 8, 56, 296, 1380, 5952
Offset: 1
Showing 1-3 of 3 results.
Comments