cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A140770 3D analog of A081113: the number of (n-1)-step paths a 3D chess king can make starting from one face of the n X n X n cube to the opposite one.

Original entry on oeis.org

1, 16, 289, 4624, 67081, 902500, 11471769, 139570596, 1640493009, 18754206916, 209576262025, 2298031637476, 24798178969729, 263962539461776, 2776718023652329, 28909790108979264, 298278580556192769, 3052900712959977636, 31023767417676585561, 313247762072931012804
Offset: 1

Views

Author

R. J. Mathar, Jun 11 2010

Keywords

Comments

The rule is that the king can move in one step to any of the 26 (=3*3-1) adjacent positions; because we allow only solutions with n-1 steps, one component of the direction is enforced and only a choice of 9 different next steps remains; if the path is close to the cube surface, even fewer.
This is the square of A081113, because for both x and y coordinates you have A081113(n) possibilities for the path (and you can choose them independently). - Robert Gerbicz, Jun 11 2010

Examples

			Example: for n=2, we can start from any of the 4 places on one face and move from there directly to any of the 4 positions on the opposite side: a(2) = 4*4 = 16.
		

Crossrefs

Cf. A081113.

A296449 Triangle I(m,n) read by rows: number of perfect lattice paths on the m*n board.

Original entry on oeis.org

1, 2, 4, 3, 7, 17, 4, 10, 26, 68, 5, 13, 35, 95, 259, 6, 16, 44, 122, 340, 950, 7, 19, 53, 149, 421, 1193, 3387, 8, 22, 62, 176, 502, 1436, 4116, 11814, 9, 25, 71, 203, 583, 1679, 4845, 14001, 40503, 10, 28, 80, 230, 664, 1922, 5574, 16188, 47064, 136946, 11, 31, 89, 257, 745, 2165, 6303, 18375, 53625, 156629, 457795
Offset: 1

Views

Author

R. J. Mathar, Dec 13 2017

Keywords

Examples

			Triangle begins:
   1;
   2,  4;
   3,  7, 17;
   4, 10, 26,  68;
   5, 13, 35,  95, 259;
   6, 16, 44, 122, 340,  950;
   7, 19, 53, 149, 421, 1193, 3387;
   8, 22, 62, 176, 502, 1436, 4116, 11814;
   9, 25, 71, 203, 583, 1679, 4845, 14001, 40503;
  10, 28, 80, 230, 664, 1922, 5574, 16188, 47064, 136946;
		

Crossrefs

Cf. A081113 (diagonal), A000079 (2nd row), A001333 (3rd row), A126358, A057960, A126360, A002714, A126362, A188866.

Programs

  • Maple
    Inm := proc(n,m)
        if m >= n then
            (n+2)*3^(n-2)+(m-n)*add(A005773(i)*A005773(n-i),i=0..n-1)
                +2*add((n-k-2)*3^(n-k-3)*A001006(k),k=0..n-3) ;
        else
            0 ;
        end if;
    end proc:
    for m from 1 to 13 do
    for n from 1 to m do
        printf("%a,",Inm(n,m)) ;
    end do:
    printf("\n") ;
    end do:
    # Second program:
    A296449row := proc(n) local gf, ser;
    gf := n -> 1 + (x*(n - (3*n + 2)*x) + (2*x^2)*(1 +
    ChebyshevU(n - 1, (1 - x)/(2*x))) / ChebyshevU(n, (1 - x)/(2*x)))/(1 - 3*x)^2;
    ser := n -> series(expand(gf(n)), x, n + 1);
    seq(coeff(ser(n), x, k), k = 1..n) end:
    for n from 0 to 11 do A296449row(n) od; # Peter Luschny, Sep 07 2021
  • Mathematica
    (* b = A005773 *) b[0] = 1; b[n_] := Sum[k/n*Sum[Binomial[n, j] * Binomial[j, 2*j - n - k], {j, 0, n}], {k, 1, n}];
    (* c = A001006 *) c[0] = 1; c[n_] := c[n] = c[n-1] + Sum[c[k] * c[n-2-k], {k, 0, n-2}];
    Inm[n_, m_] := If[m >= n, (n + 2)*3^(n - 2) + (m - n)*Sum[b[i]*b[n - i], {i, 0, n - 1}] + 2*Sum[(n - k - 2)*3^(n - k - 3)*c[k], {k, 0, n-3}], 0];
    Table[Inm[n, m], {m, 1, 13}, {n, 1, m}] // Flatten (* Jean-François Alcover, Jan 23 2018, adapted from first Maple program. *)

Formula

I(m,n) = (n+2)*3^(n-2) + (m-n)*Sum_{i=0..n-1} A005773(i)*A005773(n-i) + 2*Sum_{k=0..n-3} (n-k-2)*3^(n-k-3)*A001006(k). [Yaqubi Corr. 2.10]
I(m,n) = A188866(m-1,n) for m > 1. - Pontus von Brömssen, Sep 06 2021

A354548 Number of edges in the graph of continuous discrete sections for a trivial bundle in a total space of the fiber bundle of size n.

Original entry on oeis.org

1, 8, 56, 296, 1380, 5952
Offset: 1

Views

Author

Sinuhe Perea, Aug 18 2022

Keywords

Comments

A081113 gives the number of vertices in the graph.

Crossrefs

A081113 corresponds to vertices. For a trivial base we get A016777 and for a trivial fiber A000079. For nontrivial but fixed components see A188861 and A126360.
Showing 1-3 of 3 results.