A384372 Numbers m such that both m-1 and m+1 are the product of at least 4 not necessarily distinct primes.
55, 89, 127, 151, 161, 197, 199, 209, 233, 249, 251, 271, 295, 305, 307, 329, 341, 343, 349, 351, 377, 379, 391, 415, 449, 461, 463, 485, 487, 489, 491, 511, 521, 545, 551, 559, 569, 571, 593, 631, 649, 665, 685, 687, 689, 701, 703, 713, 727, 737, 739, 749, 751
Offset: 1
Keywords
Examples
55 is in the sequence because 55-1 = 2*3^3 and 55+1 = 2^3*7 are both products of at least 4 primes. 71 is not in the sequence because 71-1 = 2*5*7.
Programs
-
Maple
q:= n-> andmap(x-> numtheory[bigomega](x)>3, [n-1, n+1]): select(q, [$1..991])[]; # Alois P. Heinz, Jun 12 2025
-
PARI
isok(m) = (m>1) && (bigomega(m-1)>3) && (bigomega(m+1)>3); \\ Michel Marcus, Jun 12 2025
-
Python
from sympy import primeomega def ok(n): return n>1 and primeomega(n-1)>3 and primeomega(n+1)>3 print(list(filter(ok, range(520))))
Comments