cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081124 Binomial transform of floor(n/2)!.

Original entry on oeis.org

1, 2, 4, 8, 17, 38, 90, 224, 585, 1594, 4520, 13288, 40409, 126782, 409646, 1360512, 4637681, 16202034, 57941164, 211860488, 791272129, 3015807254, 11719800674, 46401584096, 187039192185, 767058993386, 3198568491792, 13553864902504
Offset: 0

Views

Author

Paul Barry, Mar 07 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k]*Floor[k/2]!,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Aug 15 2013 *)
  • PARI
    for(n=0,50, print1(sum(k=0,n, binomial(n,k)*(floor(k/2))!), ", ")) \\ G. C. Greubel, Feb 02 2017

Formula

a(n) = Sum_{k=0..n} C(n, k)*floor(k/2)!.
E.g.f.: exp(x)*(1+sqrt(Pi)/2*(x+2)*exp(x^2/4)*erf(x/2)). - Vladeta Jovovic, Sep 25 2003
Conjecture: 2*a(n) -4*a(n-1) +(-n+2)*a(n-2) +(n-1)*a(n-3)=0. - R. J. Mathar, Nov 24 2012
a(n) ~ sqrt(Pi*n)/2 * exp(sqrt(2*n)-n/2-1/2)*(n/2)^(n/2) * (1+5/(3*sqrt(2*n))). - Vaclav Kotesovec, Aug 15 2013