cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A081123 a(n) = floor(n/2)!.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 6, 6, 24, 24, 120, 120, 720, 720, 5040, 5040, 40320, 40320, 362880, 362880, 3628800, 3628800, 39916800, 39916800, 479001600, 479001600, 6227020800, 6227020800, 87178291200, 87178291200, 1307674368000, 1307674368000, 20922789888000, 20922789888000
Offset: 0

Views

Author

Paul Barry, Mar 07 2003

Keywords

Comments

This is the product of the first parts of the partitions (as nondecreasing list of parts) of n with exactly two positive integer parts, n > 1. - Wesley Ivan Hurt, Jan 25 2013

Examples

			a(8) = 24, since 8 has 4 nondecreasing partitions with exactly two positive integer parts: (1,7),(2,6),(3,5),(4,4).  Multiplying the first parts of these partitions together, we get: (1)(2)(3)(4) = 4! = 24. - _Wesley Ivan Hurt_, Jun 03 2013
		

Crossrefs

Programs

Formula

a(n) = floor(n/2)!.
E.g.f.: 1+sqrt(Pi)/2*(x+2)*exp(x^2/4)*erf(x/2). - Vladeta Jovovic, Sep 25 2003
From Sergei N. Gladkovskii, Jul 28 2012: (Start)
G.f. G(0) where G(k) = 1 + x/(1 - x*(k+1)/( x*(k+1) + 1/G(k+1))); (continued fraction, 3rd kind, 3-step ).
E.g.f. 1 + sqrt(Pi)/2*(x+2)*exp(x^2/4)*erf(x/2) = 1 + x/(G(0)-x) where G(k) = 2*k + 1 + x - (2*k+1)*x/(x + 2 - 2*x/G(k+1)); (continued fraction, 1st kind, 2-step).
(End)
G.f.: U(0) where U(k) = 1 + x/(1 - x*(k+2)/(x*(k+2) + 1/U(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Oct 23 2012
G.f.: U(0) where U(k) = 1 + x/((2*k+1) - x*(2*k+1)/(x + 2*1/U(k+1))) ; (continued fraction, 3-step). - Sergei N. Gladkovskii, Oct 23 2012
G.f.: 1 + x*G(0) where G(k) = 1 + x*(k+1)/(1 - x/(x + 1/G(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Nov 18 2012

A088699 Array read by antidiagonals of coefficients of generating function exp(x)/(1-y-xy).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 7, 4, 1, 1, 5, 13, 13, 5, 1, 1, 6, 21, 34, 21, 6, 1, 1, 7, 31, 73, 73, 31, 7, 1, 1, 8, 43, 136, 209, 136, 43, 8, 1, 1, 9, 57, 229, 501, 501, 229, 57, 9, 1, 1, 10, 73, 358, 1045, 1546, 1045, 358, 73, 10, 1, 1, 11, 91, 529, 1961, 4051, 4051, 1961
Offset: 0

Views

Author

Michael Somos, Oct 08 2003

Keywords

Comments

A(n,m) is the number of ways to pair the elements of two sets (with respectively n and m elements), where each element of either set may be paired with zero or one elements of the other set; number of n X m matrices of zeros and ones with at most one one in each row and column. E.g., A(2,2)=7 because we can pair {A,B} with {C,D} as {AB,CD}, {AC,BD}, {AC,B,D}, {AD,B,C}, {BC,A,D}, {BD,A,C}, or {A,B,C,D}. - Franklin T. Adams-Watters, Feb 06 2006
Compare with A086885. - Peter Bala, Sep 17 2008
A(n,m) is the number of vertex covers and independent vertex sets in the n X m lattice (rook) graph K_n X K_m. - Andrew Howroyd, May 14 2017

Examples

			      1       1       1       1       1       1       1       1       1
      1       2       3       4       5       6       7       8       9
      1       3       7      13      21      31      43      57      73
      1       4      13      34      73     136     229     358     529
      1       5      21      73     209     501    1045    1961    3393
      1       6      31     136     501    1546    4051    9276   19081
      1       7      43     229    1045    4051   13327   37633   93289
      1       8      57     358    1961    9276   37633  130922  394353
      1       9      73     529    3393   19081   93289  394353 1441729
		

Crossrefs

Row sums give A081124.
Main diagonal is A002720.

Programs

  • Maple
    A088699 := proc(i,j)
        add(binomial(i,k)*binomial(j,k)*k!,k=0..min(i,j)) ;
    end proc: # R. J. Mathar, Feb 28 2015
  • Mathematica
    max = 11; se = Series[E^x/(1 - y - x*y), {x, 0, max}, {y, 0, max}] // Normal // Expand; a[i_, j_] := SeriesCoefficient[se, {x, 0, i}, {y, 0, j}]*i!; Flatten[ Table[ a[i - j, j], {i, 0, max}, {j, 0, i}]] (* Jean-François Alcover, May 15 2012 *)
  • PARI
    A(i,j)=if(i<0 || j<0,0,i!*polcoeff(exp(x+x*O(x^i))*(1+x)^j,i))
    
  • PARI
    A(i,j)=if(i<0 || j<0,0,i!*polcoeff(exp(x/(1-x)+x*O(x^i))*(1-x)^(i-j-1),i))
    
  • PARI
    A(i,j)=local(M); if(i<0 || j<0,0,M=matrix(j+1,j+1,n,m,if(n==m,1,if(n==m+1,m))); (M^i)[j+1,]*vectorv(j+1,n,1)) /* Michael Somos, Jul 03 2004 */

Formula

E.g.f.: exp(x)/(1-y-xy)=Sum_{i, j} A(i, j) y^j x^i/i!.
A(i, j) = A(i-1, j)+j*A(i-1, j-1)+(i==0) = A(j, i).
T(n, k) = sum{j=0..k, C(n, k-j)*k!/j!} = sum{j=0..k, (k-j)!*C(k, j)C(n, k-j)}. - Paul Barry, Nov 14 2005
A(i,j) = sum_k C(i,k)*C(j,k)*k!. E.g.f.: sum_{i,j} a(i,j)*x^i/i!*y^j/j! = e^{x+y+xy}. - Franklin T. Adams-Watters, Feb 06 2006
The LDU factorization of this array, formatted as a square array, is P * D * transpose(P), where P is Pascal's triangle A007318 and D = diag(0!, 1!, 2!, ... ). Compare with A099597. - Peter Bala, Nov 06 2007
A(i,j) = (-1)^-i HypergeometricU(-i, 1 - i + j, -1). - Eric W. Weisstein, May 10 2017

A114162 C(n,k)*Floor((n-k)/2)!.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 2, 4, 6, 4, 1, 2, 10, 10, 10, 5, 1, 6, 12, 30, 20, 15, 6, 1, 6, 42, 42, 70, 35, 21, 7, 1, 24, 48, 168, 112, 140, 56, 28, 8, 1, 24, 216, 216, 504, 252, 252, 84, 36, 9, 1, 120, 240, 1080, 720, 1260, 504, 420, 120, 45, 10, 1
Offset: 0

Views

Author

Paul Barry, Nov 14 2005

Keywords

Comments

Row sums are A081124.

Examples

			Triangle begins:
  1;
  1, 1;
  1, 2, 1;
  1, 3, 3, 1;
  2, 4, 6, 4, 1;
  2, 10, 10, 10, 5, 1;
  6, 12, 30, 20, 15, 6, 1;
  6, 42, 42, 70, 35, 21, 7, 1;
		

Crossrefs

Cf. A081124.

Formula

T(n, k) = if(k<=n, C(n, k)floor((n-k)/2)!, 0).

A361522 The aerated factorial numbers.

Original entry on oeis.org

1, 0, 1, 0, 2, 0, 6, 0, 24, 0, 120, 0, 720, 0, 5040, 0, 40320, 0, 362880, 0, 3628800, 0, 39916800, 0, 479001600, 0, 6227020800, 0, 87178291200, 0, 1307674368000, 0, 20922789888000, 0, 355687428096000, 0, 6402373705728000, 0, 121645100408832000, 0, 2432902008176640000
Offset: 0

Views

Author

Peter Luschny, Mar 14 2023

Keywords

Comments

An aerated version of A000142, which is the main entry for this sequence.

Crossrefs

Programs

  • Maple
    egf := (z/2)*Pi^(1/2)*erf(z/2)*exp((z/2)^2) + 1:
    ser := series(egf, z, 42): seq(n!*coeff(ser, z, n), n = 0..40);
  • Mathematica
    a[n_] := If[OddQ[n], 0, (n/2)!]; Array[a, 41, 0] (* Amiram Eldar, Mar 14 2023 *)

Formula

a(n) = n! * [z^n] (z/2)*Pi^(1/2)*erf(z/2)*exp((z/2)^2) + 1.
a(n) = n! * [z^n] 1 + 2*u*exp(u)*hypergeom([1/2], [3/2], -u), where u = (z/2)^2.
Showing 1-4 of 4 results.