A081125
a(n) = n! / floor(n/2)!.
Original entry on oeis.org
1, 1, 2, 6, 12, 60, 120, 840, 1680, 15120, 30240, 332640, 665280, 8648640, 17297280, 259459200, 518918400, 8821612800, 17643225600, 335221286400, 670442572800, 14079294028800, 28158588057600, 647647525324800, 1295295050649600
Offset: 0
a(3) = 6 since 3+1 = 4 has two partitions into two parts, (3,1) and (2,2), and the product of the largest parts is 6. - _Wesley Ivan Hurt_, Jan 26 2013 (Clarified on Apr 20 2016)
-
[Factorial(n)/(Factorial(Floor(n/2))): n in [0..30]]; // Vincenzo Librandi, Sep 13 2011
-
Method 1) a:=n->n!/floor(n/2)!; seq(a(k),k=0..40); # Wesley Ivan Hurt, Jun 03 2013
Method 2) with(combinat, numbperm); seq(numbperm(k, floor((k+1)/2)), k = 0..40); # Wesley Ivan Hurt, Jun 06 2013
-
Table[n!/Floor[n/2]!, {n, 0, 30}] (* Wesley Ivan Hurt, Apr 20 2016 *)
-
a(n)=n!/(n\2)! \\ Charles R Greathouse IV, Sep 13 2011
-
from sympy import rf
def A081125(n): return rf((m:=n+1>>1)+(n+1&1),m) # Chai Wah Wu, Jul 22 2022
-
def a(n): return rising_factorial(ceil(n/2),floor(n/2))
[a(n) for n in range(26)] # Peter Luschny, Oct 09 2013
A332558
a(n) is the smallest k such that n*(n+1)*(n+2)*...*(n+k) is divisible by n+k+1.
Original entry on oeis.org
4, 3, 2, 3, 4, 5, 4, 3, 5, 4, 6, 5, 6, 5, 4, 7, 6, 5, 4, 3, 6, 7, 6, 5, 4, 8, 7, 6, 6, 5, 8, 7, 6, 5, 4, 8, 7, 6, 5, 7, 6, 5, 10, 9, 8, 9, 8, 7, 6, 9, 8, 7, 6, 5, 4, 6, 12, 11, 10, 9, 8, 7, 6, 7, 6, 5, 12, 11, 10, 9, 8, 7, 6, 5, 8, 7, 6, 11, 10, 9, 8, 7, 6, 5
Offset: 1
- Robert Israel, Table of n, a(n) for n = 1..10000
- David A. Corneth, PARI program
- J. S. Myers, R. Schroeppel, S. R. Shannon, N. J. A. Sloane, and P. Zimmermann, Three Cousins of Recaman's Sequence, arXiv:2004.14000 [math.NT], April 2020.
-
f:= proc(n) local k,p;
p:= n;
for k from 1 do
p:= p*(n+k);
if (p/(n+k+1))::integer then return k fi
od
end proc:
map(f, [$1..100]); # Robert Israel, Feb 25 2020
-
a[n_] := Module[{k, p = n}, For[k = 1, True, k++, p *= (n+k); If[Divisible[p, n+k+1], Return[k]]]];
Array[a, 100] (* Jean-François Alcover, Jun 04 2020, after Maple *)
-
a(n) = {my(r=n*(n+1)); for(k=2, oo, r=r*(n+k); if(r%(n+k+1)==0, return(k))); } \\ Jinyuan Wang, Feb 25 2020
-
\\ See Corneth link
-
def a(n):
k, p = 1, n*(n+1)
while p%(n+k+1): k += 1; p *= (n+k)
return k
print([a(n) for n in range(1, 85)]) # Michael S. Branicky, Jun 06 2021
A067994
Hermite numbers.
Original entry on oeis.org
1, 0, -2, 0, 12, 0, -120, 0, 1680, 0, -30240, 0, 665280, 0, -17297280, 0, 518918400, 0, -17643225600, 0, 670442572800, 0, -28158588057600, 0, 1295295050649600, 0, -64764752532480000, 0, 3497296636753920000, 0, -202843204931727360000, 0
Offset: 0
From _Steven Finch_, Nov 14 2021: (Start)
|a(4)| = 12 because the sets of ordered pairs for n = 4 are
{(1,2),(3,4)}, {(2,1),(3,4)}, {(1,2),(4,3)}, {(2,1),(4,3)},
{(1,3),(2,4)}, {(3,1),(2,4)}, {(1,3),(4,2)}, {(3,1),(4,2)},
{(1,4),(3,2)}, {(4,1),(3,2)}, {(1,4),(2,3)}, {(4,1),(2,3)}. (End)
- G. C. Greubel, Table of n, a(n) for n = 0..730
- Giuseppe Dattoli, Subuhi Khan, and Ujair Ahmad, Hermite numbers and new families of polynomials, arXiv:2503.14930 [math.NT], 2025.
- Steven Finch, Rounds, Color, Parity, Squares, arXiv:2111.14487 [math.CO], 2021.
- Eric Weisstein's World of Mathematics, Hermite Number.
- Wikipedia, Hermite number.
Cf.
A097388 (same sequence without zeros).
Cf.
A101109 (ordered triples instead of ordered pairs).
-
m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(-x^2))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jun 09 2018
-
A067994 := n -> pochhammer(-n, n/2):
seq(A067994(n), n = 0..31); # Peter Luschny, Nov 14 2021
-
HermiteH[Range[0,50], 0]
With[{nmax=50}, CoefficientList[Series[Exp[-x^2], {x,0,nmax}],x]*Range[0, nmax]!] (* G. C. Greubel, Jun 09 2018 *)
-
a(n) = polhermite(n, 0); \\ Michel Marcus, Feb 27 2015
-
x='x+O('x^30); Vec(serlaplace(exp(-x^2))) \\ G. C. Greubel, Jun 09 2018
A081124
Binomial transform of floor(n/2)!.
Original entry on oeis.org
1, 2, 4, 8, 17, 38, 90, 224, 585, 1594, 4520, 13288, 40409, 126782, 409646, 1360512, 4637681, 16202034, 57941164, 211860488, 791272129, 3015807254, 11719800674, 46401584096, 187039192185, 767058993386, 3198568491792, 13553864902504
Offset: 0
-
Table[Sum[Binomial[n,k]*Floor[k/2]!,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Aug 15 2013 *)
-
for(n=0,50, print1(sum(k=0,n, binomial(n,k)*(floor(k/2))!), ", ")) \\ G. C. Greubel, Feb 02 2017
A211374
Product of all the parts in the partitions of n into exactly 2 parts.
Original entry on oeis.org
1, 1, 2, 12, 24, 360, 720, 20160, 40320, 1814400, 3628800, 239500800, 479001600, 43589145600, 87178291200, 10461394944000, 20922789888000, 3201186852864000, 6402373705728000, 1216451004088320000, 2432902008176640000, 562000363888803840000
Offset: 1
Define a(1):=1; a(2) = 1 since 2 = 1+1 and (1)*(1) = 1; a(3) = 2 since 3 = 2+1 and (2)*(1) = 2; a(4) = 12 since 4 = 3+1 = 2+2 and (3)*(1)*(2)*(2) = 12; a(5) = 24 since 5 = 4+1 = 3+2 and (4)*(1)*(3)*(2) = 24.
-
[(Factorial(n-1) * Factorial(Floor(n/2)))/Factorial(n-1-Floor(n/2)) : n in [1..25]]; // Wesley Ivan Hurt, Oct 16 2014
-
A211374:=n->( (n-1)! * floor(n/2)! )/( (n-1) - floor(n/2) )!: seq(A211374(k), k=1..25);
with(combinat, numbperm): seq(numbperm(k-1, floor(k/2))*floor(k/2)!, k = 1..25); # Wesley Ivan Hurt, Jun 07 2013
-
Table[Times @@ Flatten[Select[Partitions[n], Length[#] == 2 &]], {n, 25}] (* T. D. Noe, Feb 11 2013 *)
Table[((n - 1)!*Floor[n/2]!)/(n - 1 - Floor[n/2])!, {n, 25}] (* Wesley Ivan Hurt, Oct 16 2014 *)
-
a(n) = prod(i=1, n\2, i*(n-i)); \\ Michel Marcus, Nov 14 2017
A368338
Number T(n,k) of partitions of [n] whose sum of block maxima minus block minima gives k, triangle T(n,k), n>=0, 0<=k<=A002620(n), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 2, 1, 3, 5, 4, 2, 1, 4, 9, 12, 12, 8, 6, 1, 5, 14, 25, 34, 36, 36, 28, 18, 6, 1, 6, 20, 44, 74, 100, 122, 132, 132, 108, 78, 36, 24, 1, 7, 27, 70, 139, 224, 318, 408, 490, 534, 536, 468, 378, 258, 162, 96, 24, 1, 8, 35, 104, 237, 440, 710, 1032, 1398, 1764, 2094, 2296, 2364, 2220, 1962, 1584, 1242, 816, 528, 192, 120
Offset: 0
T(4,0) = 1: 1|2|3|4.
T(4,1) = 3: 12|3|4, 1|23|4, 1|2|34.
T(4,2) = 5: 123|4, 12|34, 13|2|4, 1|234, 1|24|3.
T(4,3) = 4: 1234, 124|3, 134|2, 14|2|3.
T(4,4) = 2: 13|24, 14|23.
T(5,5) = 8: 124|35, 125|34, 13|245, 13|25|4, 145|23, 15|23|4, 14|2|35, 15|2|34.
T(5,6) = 6: 134|25, 135|24, 14|235, 15|234, 14|25|3, 15|24|3.
T(6,9) = 6: 14|25|36, 14|26|35, 15|24|36, 16|24|35, 15|26|34, 16|25|34.
Triangle T(n,k) begins:
1;
1;
1, 1;
1, 2, 2;
1, 3, 5, 4, 2;
1, 4, 9, 12, 12, 8, 6;
1, 5, 14, 25, 34, 36, 36, 28, 18, 6;
1, 6, 20, 44, 74, 100, 122, 132, 132, 108, 78, 36, 24;
...
-
b:= proc(n, m) option remember; `if`(n=0, x^add(-i, i=m), add(
b(n-1, subs(j=n, m)), j=m)+expand(b(n-1, {m[], n})*x^n))
end:
T:= (n, k)-> coeff(b(n, {}), x, k):
seq(seq(T(n, k), k=0..(h-> h*(n-h))(iquo(n, 2))), n=0..10);
# second Maple program:
b:= proc(n, s) option remember; `if`(n=0, 1, (k-> `if`(n>k,
b(n-1, s)*(k+1), 0)+`if`(n>k+1, b(n-1, {s[], n}), 0)+
add(expand(x^(h-n)*b(n-1, s minus {h})), h=s))(nops(s)))
end:
T:= (n, k)-> coeff(b(n, {}), x, k):
seq(seq(T(n, k), k=0..floor(n^2/4)), n=0..10);
A231601
Number of permutations of [n] avoiding ascents from odd to even numbers.
Original entry on oeis.org
1, 1, 1, 4, 8, 54, 162, 1536, 6144, 75000, 375000, 5598720, 33592320, 592950960, 4150656720, 84557168640, 676457349120, 15620794116480, 140587147048320, 3628800000000000, 36288000000000000, 1035338990313196800, 11388728893445164800, 355902198372945100800
Offset: 0
a(0) = 1: ().
a(1) = 1: 1.
a(2) = 1: 21.
a(3) = 4: 132, 213, 231, 321.
a(4) = 8: 1324, 2413, 2431, 3241, 4132, 4213, 4231, 4321.
a(5) = 54: 13245, 13254, 13524, ..., 54213, 54231, 54321.
a(6) = 162: 132465, 132546, 132645, ..., 654213, 654231, 654321.
Bisection gives:
A061711 (even part).
A249128
Triangular array: row n gives the coefficients of the polynomial p(n,x) defined in Comments.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 2, 4, 5, 1, 1, 6, 11, 7, 8, 1, 1, 6, 18, 26, 10, 11, 1, 1, 24, 50, 46, 58, 14, 15, 1, 1, 24, 96, 154, 86, 102, 18, 19, 1, 1, 120, 274, 326, 444, 156, 177, 23, 24, 1, 1, 120, 600, 1044, 756, 954, 246, 272, 28, 29, 1, 1, 720, 1764, 2556, 3708, 1692, 2016, 384, 416, 34, 35, 1, 1
Offset: 0
f(0,x) = 1/1, so that p(0,x) = 1;
f(1,x) = (1 + x)/1, so that p(1,x) = 1 + x;
f(2,x) = (1 + x + x^2)/(1 + x), so that p(2,x) = 1 + x + x^2.
First 6 rows of the triangle of coefficients:
1
1 1
1 1 1
2 3 1 1
2 4 5 1 1
6 11 7 8 1 1
-
z = 15; p[x_, n_] := x + Floor[n/2]/p[x, n - 1]; p[x_, 1] = 1;
t = Table[Factor[p[x, n]], {n, 1, z}]
u = Numerator[t]
TableForm[Table[CoefficientList[u[[n]], x], {n, 1, z}]] (* A249128 array *)
Flatten[CoefficientList[u, x]] (* A249128 sequence *)
A056043
Let k be largest number such that k^2 divides n!; a(n) = k/floor(n/2)!.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 2, 1, 3, 6, 6, 2, 2, 2, 6, 3, 3, 2, 2, 2, 2, 2, 2, 2, 10, 10, 30, 30, 30, 12, 12, 3, 3, 6, 30, 10, 10, 10, 30, 6, 6, 2, 2, 2, 30, 60, 60, 30, 210, 42, 42, 42, 42, 28, 28, 2, 2, 4, 4, 4, 4, 4, 84, 21, 21, 14, 14, 14, 42, 6, 6, 2, 2, 2, 10, 10, 70, 140, 140, 14, 126, 126
Offset: 1
For n = 7, 7! = 5040 = 144*35, so 12 is its largest square-root-divisor, A000188(5040), and it is divisible by 6 = 3!, so a(7) = 12/3! = 2.
-
f[p_, e_] := p^Floor[e/2]; b[1] = 1; a[n_] := (Times @@ f @@@ FactorInteger[n!]) / Floor[n/2]!; Array[a, 100] (* Amiram Eldar, May 24 2024 *)
A211229
Matrix inverse of lower triangular array A211226.
Original entry on oeis.org
1, -1, 1, 0, -1, 1, 0, 0, -1, 1, 1, 0, 0, -2, 1, -1, 1, 0, 0, -1, 1, 2, -3, 3, 0, 0, -3, 1, -2, 2, -3, 3, 0, 0, -1, 1, 9, -8, 8, -12, 6, 0, 0, -4, 1, -9, 9, -8, 8, -6, 6, 0, 0, -1, 1, 44, -45, 45, -40, 20, -30, 10, 0, 0, -5, 1, -44, 44, -45, 45, -20, 20, -10, 10, 0, 0, -1, 1
Offset: 0
Triangle begins:
n\k | 0 1 2 3 4 5 6 7 8 9
=====+==================================================
0 | 1
1 | -1 1
2 | 0 -1 1
3 | 0 0 -1 1
4 | 1 0 0 -2 1
5 | -1 1 0 0 -1 1
6 | 2 -3 3 0 0 -3 1
7 | -2 2 -3 3 0 0 -1 1
8 | 9 -8 8 -12 6 0 0 -4 1
9 | -9 9 -8 8 -6 6 0 0 -1 1
...
-
b[j_] = Floor[j/2]; h = If[EvenQ[n] && OddQ[k], 1, 0];
Table[(-1)^(n+k) (b[n]!/b[k]!) Sum[(-1)^i/i!, {i, 0, b[n-k]-h}], {n, 0, 31}, {k, 0, n}] //Flatten (* Manfred Boergens, Jan 10 2023 *)
(* Sum-free code *)
b[j_] = Floor[j/2]; h = If[EvenQ[n] && OddQ[k], 1, 0];
T[n_, k_] = (-1)^(n+k) (b[n]!/b[k]!) If[n-k<2, 1, Round[(b[n-k]-h)!/E]/(b[n-k]-h)!];
Table[T[n, k], {n, 0, 31}, {k, 0, n}] // Flatten
(* Manfred Boergens, Jan 10 2023 *)
-
f(n) = (n\2)!; \\ A081123
T(n,k) = f(n)/(f(k)*f(n-k)); \\ A211226
tabl(nn) = my(m=matrix(nn, nn, n, k, if (n>=k, T(n-1,k-1), 0))); 1/m; \\ Michel Marcus, Jan 10 2023
Showing 1-10 of 18 results.
Comments