cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A081125 a(n) = n! / floor(n/2)!.

Original entry on oeis.org

1, 1, 2, 6, 12, 60, 120, 840, 1680, 15120, 30240, 332640, 665280, 8648640, 17297280, 259459200, 518918400, 8821612800, 17643225600, 335221286400, 670442572800, 14079294028800, 28158588057600, 647647525324800, 1295295050649600
Offset: 0

Views

Author

Paul Barry, Mar 07 2003

Keywords

Comments

Product of the largest parts in the partitions of n+1 into exactly two parts, n > 0. - Wesley Ivan Hurt, Jan 26 2013 (Clarified on Apr 20 2016)

Examples

			a(3) = 6 since 3+1 = 4 has two partitions into two parts, (3,1) and (2,2), and the product of the largest parts is 6. - _Wesley Ivan Hurt_, Jan 26 2013 (Clarified on Apr 20 2016)
		

Crossrefs

Cf. A004526, A056040, A081123, A000407 (bisection), A001813 (bisection).

Programs

  • Magma
    [Factorial(n)/(Factorial(Floor(n/2))): n in [0..30]]; // Vincenzo Librandi, Sep 13 2011
    
  • Maple
    Method 1)  a:=n->n!/floor(n/2)!; seq(a(k),k=0..40); # Wesley Ivan Hurt, Jun 03 2013
    Method 2)  with(combinat, numbperm); seq(numbperm(k, floor((k+1)/2)), k = 0..40); # Wesley Ivan Hurt, Jun 06 2013
  • Mathematica
    Table[n!/Floor[n/2]!, {n, 0, 30}] (* Wesley Ivan Hurt, Apr 20 2016 *)
  • PARI
    a(n)=n!/(n\2)! \\ Charles R Greathouse IV, Sep 13 2011
    
  • Python
    from sympy import rf
    def A081125(n): return rf((m:=n+1>>1)+(n+1&1),m) # Chai Wah Wu, Jul 22 2022
  • Sage
    def a(n): return rising_factorial(ceil(n/2),floor(n/2))
    [a(n) for n in range(26)]  # Peter Luschny, Oct 09 2013
    

Formula

E.g.f.: (1+x)*exp(x^2). - Vladeta Jovovic, Sep 24 2003
From Peter Luschny, Aug 07 2009: (Start)
a(n) = sqrt(n!*n$) where n$ denotes the swinging factorial (A056040).
a(n) = 2^n Gamma((n+1+(n mod 2))/2)/sqrt(Pi). (End)
E.g.f.: E(0) where E(k) = 1 + x/(1 - x/(x + (k+1)/E(k+1))) ; (continued fraction, 3rd kind, 3-step). - Sergei N. Gladkovskii, Sep 20 2012
G.f.: G(0) where G(k) = 1 + x*(2*k+1)/(1 - 2*x/(2*x + 1/G(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Nov 18 2012
D-finite with recurrence a(n) +2*a(n-1) -2*n*a(n-2) +4*(-n+2)*a(n-3) = 0. - R. J. Mathar, Nov 26 2012
From Wesley Ivan Hurt, Jun 06 2013: (Start)
a(n) = n!/(n-floor((n+1)/2))!.
a(n) = Product_{i = ceiling(n/2)..(n-1)} i. [Note: empty product = 1]
a(n) = P( n, floor((n+1)/2) ), where P(n,k) are the number of k-permutations of n objects. (End)
a(n) = n$*floor(n/2)! where n$ denotes the swinging factorial (A056040). - Peter Luschny, Oct 28 2013
From Amiram Eldar, Mar 10 2022: (Start)
Sum_{n>=0} 1/a(n) = 1 + (3/2)*exp(1/4)*sqrt(Pi)*erf(1/2).
Sum_{n>=0} (-1)^n/a(n) = 1 - (1/2)*exp(1/4)*sqrt(Pi)*erf(1/2). (End)

A332558 a(n) is the smallest k such that n*(n+1)*(n+2)*...*(n+k) is divisible by n+k+1.

Original entry on oeis.org

4, 3, 2, 3, 4, 5, 4, 3, 5, 4, 6, 5, 6, 5, 4, 7, 6, 5, 4, 3, 6, 7, 6, 5, 4, 8, 7, 6, 6, 5, 8, 7, 6, 5, 4, 8, 7, 6, 5, 7, 6, 5, 10, 9, 8, 9, 8, 7, 6, 9, 8, 7, 6, 5, 4, 6, 12, 11, 10, 9, 8, 7, 6, 7, 6, 5, 12, 11, 10, 9, 8, 7, 6, 5, 8, 7, 6, 11, 10, 9, 8, 7, 6, 5
Offset: 1

Views

Author

Keywords

Comments

This is a multiplicative analog of A332542.
a(n) always exists because one can take k to be 2^m - 1 for m large.

Crossrefs

Cf. A061836 (k+1), A332559 (n+k+1), A332560 (the final product), A332561 (the quotient).
For records, see A333532 and A333533 (and A333537), which give the records in the essentially identical sequence A061836.
Additive version: A332542, A332543, A332544, A081123.
"Concatenate in base 10" version: A332580, A332584, A332585.

Programs

  • Maple
    f:= proc(n) local k,p;
      p:= n;
      for k from 1 do
        p:= p*(n+k);
        if (p/(n+k+1))::integer then return k fi
      od
    end proc:
    map(f, [$1..100]); # Robert Israel, Feb 25 2020
  • Mathematica
    a[n_] := Module[{k, p = n}, For[k = 1, True, k++, p *= (n+k); If[Divisible[p, n+k+1], Return[k]]]];
    Array[a, 100] (* Jean-François Alcover, Jun 04 2020, after Maple *)
  • PARI
    a(n) = {my(r=n*(n+1)); for(k=2, oo, r=r*(n+k); if(r%(n+k+1)==0, return(k))); } \\ Jinyuan Wang, Feb 25 2020
    
  • PARI
    \\ See Corneth link
    
  • Python
    def a(n):
        k, p = 1, n*(n+1)
        while p%(n+k+1): k += 1; p *= (n+k)
        return k
    print([a(n) for n in range(1, 85)]) # Michael S. Branicky, Jun 06 2021

Formula

a(n) = A061836(n) - 1 for n >= 1.
a(n + 1) >= a(n) - 1. a(n + 1) = a(n) - 1 mostly. - David A. Corneth, Apr 14 2020

A067994 Hermite numbers.

Original entry on oeis.org

1, 0, -2, 0, 12, 0, -120, 0, 1680, 0, -30240, 0, 665280, 0, -17297280, 0, 518918400, 0, -17643225600, 0, 670442572800, 0, -28158588057600, 0, 1295295050649600, 0, -64764752532480000, 0, 3497296636753920000, 0, -202843204931727360000, 0
Offset: 0

Views

Author

Eric W. Weisstein, Feb 07 2002

Keywords

Comments

|a(n)| is the number of sets of ordered pairs of n labeled elements. - Steven Finch, Nov 14 2021
|a(n)| is the number of square roots of any permutation in S_{2n} whose disjoint cycle decomposition consists of n transpositions, n > 0. For n=2, permutation (1,2)(3,4) in S_4 has exactly |a(2)|=2 square roots: (1,3,2,4) and (1,4,2,3). - Luis Manuel Rivera Martínez, Feb 25 2015
Self-convolution gives A076729(n)*(-1)^n interleaved with zeros. - Vladimir Reshetnikov, Oct 11 2016
Named after the French mathematician Charles Hermite (1822-1901). - Amiram Eldar, Jun 06 2021

Examples

			From _Steven Finch_, Nov 14 2021: (Start)
|a(4)| = 12 because the sets of ordered pairs for n = 4 are
  {(1,2),(3,4)}, {(2,1),(3,4)}, {(1,2),(4,3)}, {(2,1),(4,3)},
  {(1,3),(2,4)}, {(3,1),(2,4)}, {(1,3),(4,2)}, {(3,1),(4,2)},
  {(1,4),(3,2)}, {(4,1),(3,2)}, {(1,4),(2,3)}, {(4,1),(2,3)}. (End)
		

Crossrefs

Cf. A097388 (same sequence without zeros).
Cf. A101109 (ordered triples instead of ordered pairs).

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(-x^2))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jun 09 2018
  • Maple
    A067994 := n -> pochhammer(-n, n/2):
    seq(A067994(n), n = 0..31); # Peter Luschny, Nov 14 2021
  • Mathematica
    HermiteH[Range[0,50], 0]
    With[{nmax=50}, CoefficientList[Series[Exp[-x^2], {x,0,nmax}],x]*Range[0, nmax]!] (* G. C. Greubel, Jun 09 2018 *)
  • PARI
    a(n) = polhermite(n, 0); \\ Michel Marcus, Feb 27 2015
    
  • PARI
    x='x+O('x^30); Vec(serlaplace(exp(-x^2))) \\ G. C. Greubel, Jun 09 2018
    

Formula

E.g.f.: exp(-x^2). - Vladeta Jovovic, Aug 24 2002
a(n) = (-1)^(n/2)*n!/(n/2)! if n is even, 0 otherwise. - Mitch Harris, Feb 01 2006
a(n) = -(2*n-2)*a(n-2). - Alexander Karpov, Jul 24 2017
E.g.f.: U(0) where U(k) = 1 - x^2/((2*k+1) - x^2*(2*k+1)/(x^2 - 2*(k+1)/U(k+1))); (continued fraction). - Sergei N. Gladkovskii, Oct 23 2012
G.f.: 1/G(0) where G(k) = 1 + 2*x^2*(k+1)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 05 2012
E.g.f.: E(0)/(1+x) where E(k) = 1 + x/(1 - x/(x - (k+1)/E(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Apr 05 2013
E.g.f.: E(0)-1, where E(k) = 2 - x^2/(2*k+1 + x^2/E(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Dec 24 2013
a(2*k) = A097388(k), a(2*k+1) = 0. - Joerg Arndt, Oct 12 2016
From Peter Luschny, Nov 14 2021: (Start)
a(n) = A057077(n)*A126869(n)*A081123(n). In particular, a(n) is divisible by floor(n/2)!.
a(n) = Pochhammer(-n, n/2). (End)

A081124 Binomial transform of floor(n/2)!.

Original entry on oeis.org

1, 2, 4, 8, 17, 38, 90, 224, 585, 1594, 4520, 13288, 40409, 126782, 409646, 1360512, 4637681, 16202034, 57941164, 211860488, 791272129, 3015807254, 11719800674, 46401584096, 187039192185, 767058993386, 3198568491792, 13553864902504
Offset: 0

Views

Author

Paul Barry, Mar 07 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k]*Floor[k/2]!,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Aug 15 2013 *)
  • PARI
    for(n=0,50, print1(sum(k=0,n, binomial(n,k)*(floor(k/2))!), ", ")) \\ G. C. Greubel, Feb 02 2017

Formula

a(n) = Sum_{k=0..n} C(n, k)*floor(k/2)!.
E.g.f.: exp(x)*(1+sqrt(Pi)/2*(x+2)*exp(x^2/4)*erf(x/2)). - Vladeta Jovovic, Sep 25 2003
Conjecture: 2*a(n) -4*a(n-1) +(-n+2)*a(n-2) +(n-1)*a(n-3)=0. - R. J. Mathar, Nov 24 2012
a(n) ~ sqrt(Pi*n)/2 * exp(sqrt(2*n)-n/2-1/2)*(n/2)^(n/2) * (1+5/(3*sqrt(2*n))). - Vaclav Kotesovec, Aug 15 2013

A211374 Product of all the parts in the partitions of n into exactly 2 parts.

Original entry on oeis.org

1, 1, 2, 12, 24, 360, 720, 20160, 40320, 1814400, 3628800, 239500800, 479001600, 43589145600, 87178291200, 10461394944000, 20922789888000, 3201186852864000, 6402373705728000, 1216451004088320000, 2432902008176640000, 562000363888803840000
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 06 2013

Keywords

Examples

			Define a(1):=1; a(2) = 1 since 2 = 1+1 and (1)*(1) = 1; a(3) = 2 since 3 = 2+1 and (2)*(1) = 2; a(4) = 12 since 4 = 3+1 = 2+2 and (3)*(1)*(2)*(2) = 12; a(5) = 24 since 5 = 4+1 = 3+2 and (4)*(1)*(3)*(2) = 24.
		

Crossrefs

Programs

  • Magma
    [(Factorial(n-1) * Factorial(Floor(n/2)))/Factorial(n-1-Floor(n/2)) : n in [1..25]]; // Wesley Ivan Hurt, Oct 16 2014
    
  • Maple
    A211374:=n->( (n-1)! * floor(n/2)! )/( (n-1) - floor(n/2) )!: seq(A211374(k), k=1..25);
    with(combinat, numbperm): seq(numbperm(k-1, floor(k/2))*floor(k/2)!, k = 1..25); # Wesley Ivan Hurt, Jun 07 2013
  • Mathematica
    Table[Times @@ Flatten[Select[Partitions[n], Length[#] == 2 &]], {n, 25}] (* T. D. Noe, Feb 11 2013 *)
    Table[((n - 1)!*Floor[n/2]!)/(n - 1 - Floor[n/2])!, {n, 25}] (* Wesley Ivan Hurt, Oct 16 2014 *)
  • PARI
    a(n) = prod(i=1, n\2, i*(n-i)); \\ Michel Marcus, Nov 14 2017

Formula

a(n) = ( (n-1)! * floor(n/2)! )/( n-1-floor(n/2) )!.
a(n) = P(n-1, floor(n/2)) * floor(n/2)!, where P(n,k) are the k-permutations of n objects. - Wesley Ivan Hurt, Jun 07 2013
a(2n) = A002674(n); a(2n+1) = A010050(n). - Wesley Ivan Hurt, Oct 16 2014
a(n) = Product_{i=1..floor(n/2)} i * (n-i). - Wesley Ivan Hurt, Nov 14 2017
From Amiram Eldar, Mar 10 2022: (Start)
Sum_{n>=1} 1/a(n) = 3*cosh(1) - 2.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2 - cosh(1). (End)

A368338 Number T(n,k) of partitions of [n] whose sum of block maxima minus block minima gives k, triangle T(n,k), n>=0, 0<=k<=A002620(n), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 1, 3, 5, 4, 2, 1, 4, 9, 12, 12, 8, 6, 1, 5, 14, 25, 34, 36, 36, 28, 18, 6, 1, 6, 20, 44, 74, 100, 122, 132, 132, 108, 78, 36, 24, 1, 7, 27, 70, 139, 224, 318, 408, 490, 534, 536, 468, 378, 258, 162, 96, 24, 1, 8, 35, 104, 237, 440, 710, 1032, 1398, 1764, 2094, 2296, 2364, 2220, 1962, 1584, 1242, 816, 528, 192, 120
Offset: 0

Views

Author

Alois P. Heinz, Dec 21 2023

Keywords

Examples

			T(4,0) = 1: 1|2|3|4.
T(4,1) = 3: 12|3|4, 1|23|4, 1|2|34.
T(4,2) = 5: 123|4, 12|34, 13|2|4, 1|234, 1|24|3.
T(4,3) = 4: 1234, 124|3, 134|2, 14|2|3.
T(4,4) = 2: 13|24, 14|23.
T(5,5) = 8: 124|35, 125|34, 13|245, 13|25|4, 145|23, 15|23|4, 14|2|35, 15|2|34.
T(5,6) = 6: 134|25, 135|24, 14|235, 15|234, 14|25|3, 15|24|3.
T(6,9) = 6: 14|25|36, 14|26|35, 15|24|36, 16|24|35, 15|26|34, 16|25|34.
Triangle T(n,k) begins:
  1;
  1;
  1, 1;
  1, 2,  2;
  1, 3,  5,  4,  2;
  1, 4,  9, 12, 12,   8,   6;
  1, 5, 14, 25, 34,  36,  36,  28,  18,   6;
  1, 6, 20, 44, 74, 100, 122, 132, 132, 108, 78, 36, 24;
  ...
		

Crossrefs

Columns k=0..3 give: A000012, A001477(n-1), A000096(n-2), A000297(n-4).
Row sums give A000110.

Programs

  • Maple
    b:= proc(n, m) option remember; `if`(n=0, x^add(-i, i=m), add(
          b(n-1, subs(j=n, m)), j=m)+expand(b(n-1, {m[], n})*x^n))
        end:
    T:= (n, k)-> coeff(b(n, {}), x, k):
    seq(seq(T(n, k), k=0..(h-> h*(n-h))(iquo(n, 2))), n=0..10);
    # second Maple program:
    b:= proc(n, s) option remember; `if`(n=0, 1, (k-> `if`(n>k,
          b(n-1, s)*(k+1), 0)+`if`(n>k+1, b(n-1, {s[], n}), 0)+
          add(expand(x^(h-n)*b(n-1, s minus {h})), h=s))(nops(s)))
        end:
    T:= (n, k)-> coeff(b(n, {}), x, k):
    seq(seq(T(n, k), k=0..floor(n^2/4)), n=0..10);

Formula

Sum_{k=0..A002620(n)} k * T(n,k) = A367850(n).
T(n,A002620(n)) = A081123(n+1).

A231601 Number of permutations of [n] avoiding ascents from odd to even numbers.

Original entry on oeis.org

1, 1, 1, 4, 8, 54, 162, 1536, 6144, 75000, 375000, 5598720, 33592320, 592950960, 4150656720, 84557168640, 676457349120, 15620794116480, 140587147048320, 3628800000000000, 36288000000000000, 1035338990313196800, 11388728893445164800, 355902198372945100800
Offset: 0

Views

Author

Alois P. Heinz, Nov 11 2013

Keywords

Examples

			a(0) = 1: ().
a(1) = 1: 1.
a(2) = 1: 21.
a(3) = 4: 132, 213, 231, 321.
a(4) = 8: 1324, 2413, 2431, 3241, 4132, 4213, 4231, 4321.
a(5) = 54: 13245, 13254, 13524, ..., 54213, 54231, 54321.
a(6) = 162: 132465, 132546, 132645, ..., 654213, 654231, 654321.
		

Crossrefs

Column k=0 of A231777.
Bisection gives: A061711 (even part).

Programs

  • Maple
    a:= n-> ceil(n/2)!*ceil(n/2)^floor(n/2):
    seq(a(n), n=0..30);

Formula

a(n) = ceiling(n/2)! * ceiling(n/2)^floor(n/2).
a(n) = A081123(n+1) * A110138(n).

A249128 Triangular array: row n gives the coefficients of the polynomial p(n,x) defined in Comments.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 2, 4, 5, 1, 1, 6, 11, 7, 8, 1, 1, 6, 18, 26, 10, 11, 1, 1, 24, 50, 46, 58, 14, 15, 1, 1, 24, 96, 154, 86, 102, 18, 19, 1, 1, 120, 274, 326, 444, 156, 177, 23, 24, 1, 1, 120, 600, 1044, 756, 954, 246, 272, 28, 29, 1, 1, 720, 1764, 2556, 3708, 1692, 2016, 384, 416, 34, 35, 1, 1
Offset: 0

Views

Author

Clark Kimberling, Oct 22 2014

Keywords

Comments

The polynomial p(n,x) is the numerator of the rational function given by f(n,x) = x + floor((n+1)/2)/f(n-1,x), where f(0,x) = 1.
(Sum of numbers in row n) = A056953(n) for n >= 0.
Column 1 consists of repeated factorials (A000142), as in A081123.

Examples

			f(0,x) = 1/1, so that p(0,x) = 1;
f(1,x) = (1 + x)/1, so that p(1,x) = 1 + x;
f(2,x) = (1 + x + x^2)/(1 + x), so that p(2,x) = 1 + x + x^2.
First 6 rows of the triangle of coefficients:
  1
  1    1
  1    1    1
  2    3    1    1
  2    4    5    1    1
  6    11   7    8    1    1
		

Crossrefs

Programs

  • Mathematica
    z = 15; p[x_, n_] := x + Floor[n/2]/p[x, n - 1]; p[x_, 1] = 1;
    t = Table[Factor[p[x, n]], {n, 1, z}]
    u = Numerator[t]
    TableForm[Table[CoefficientList[u[[n]], x], {n, 1, z}]] (* A249128 array *)
    Flatten[CoefficientList[u, x]] (* A249128 sequence *)

A056043 Let k be largest number such that k^2 divides n!; a(n) = k/floor(n/2)!.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 1, 3, 6, 6, 2, 2, 2, 6, 3, 3, 2, 2, 2, 2, 2, 2, 2, 10, 10, 30, 30, 30, 12, 12, 3, 3, 6, 30, 10, 10, 10, 30, 6, 6, 2, 2, 2, 30, 60, 60, 30, 210, 42, 42, 42, 42, 28, 28, 2, 2, 4, 4, 4, 4, 4, 84, 21, 21, 14, 14, 14, 42, 6, 6, 2, 2, 2, 10, 10, 70, 140, 140, 14, 126, 126
Offset: 1

Views

Author

Labos Elemer, Jul 25 2000

Keywords

Examples

			For n = 7, 7! = 5040 = 144*35, so 12 is its largest square-root-divisor, A000188(5040), and it is divisible by 6 = 3!, so a(7) = 12/3! = 2.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^Floor[e/2]; b[1] = 1; a[n_] := (Times @@ f @@@ FactorInteger[n!]) / Floor[n/2]!; Array[a, 100] (* Amiram Eldar, May 24 2024 *)

Formula

a(n) = A000188(n!)/floor(n/2)! = A055772(n)/A000142(A004526(n)) = A055772(n)/A081123(n). [Corrected by Amiram Eldar, May 24 2024]

A211229 Matrix inverse of lower triangular array A211226.

Original entry on oeis.org

1, -1, 1, 0, -1, 1, 0, 0, -1, 1, 1, 0, 0, -2, 1, -1, 1, 0, 0, -1, 1, 2, -3, 3, 0, 0, -3, 1, -2, 2, -3, 3, 0, 0, -1, 1, 9, -8, 8, -12, 6, 0, 0, -4, 1, -9, 9, -8, 8, -6, 6, 0, 0, -1, 1, 44, -45, 45, -40, 20, -30, 10, 0, 0, -5, 1, -44, 44, -45, 45, -20, 20, -10, 10, 0, 0, -1, 1
Offset: 0

Views

Author

Peter Bala, Apr 05 2012

Keywords

Comments

This triangle is related to the derangement numbers. The subtriangles (T(2*n,2*k))n,k>=0, -(T(2*n+1,2*k))n,k>=0, and (T(2*n+1,2*k+1))n,k>=0 are all equal to A008290, while the subtriangle (T(2*n,2*k+1))n,k>=0 equals -A180188 (with an extra initial row of zeros).

Examples

			Triangle begins:
   n\k |    0    1    2    3    4    5    6    7    8    9
  =====+==================================================
    0  |    1
    1  |   -1    1
    2  |    0   -1    1
    3  |    0    0   -1    1
    4  |    1    0    0   -2    1
    5  |   -1    1    0    0   -1    1
    6  |    2   -3    3    0    0   -3    1
    7  |   -2    2   -3    3    0    0   -1    1
    8  |    9   -8    8  -12    6    0    0   -4    1
    9  |   -9    9   -8    8   -6    6    0    0   -1    1
  ...
		

Crossrefs

Programs

  • Mathematica
    b[j_] = Floor[j/2]; h = If[EvenQ[n] && OddQ[k], 1, 0];
    Table[(-1)^(n+k) (b[n]!/b[k]!) Sum[(-1)^i/i!, {i, 0, b[n-k]-h}], {n, 0, 31}, {k, 0, n}] //Flatten (* Manfred Boergens, Jan 10 2023 *)
    (* Sum-free code *)
    b[j_] = Floor[j/2]; h = If[EvenQ[n] && OddQ[k], 1, 0];
    T[n_, k_] = (-1)^(n+k) (b[n]!/b[k]!) If[n-k<2, 1, Round[(b[n-k]-h)!/E]/(b[n-k]-h)!];
    Table[T[n, k], {n, 0, 31}, {k, 0, n}] // Flatten
    (* Manfred Boergens, Jan 10 2023 *)
  • PARI
    f(n) = (n\2)!; \\ A081123
    T(n,k) = f(n)/(f(k)*f(n-k)); \\ A211226
    tabl(nn) = my(m=matrix(nn, nn, n, k, if (n>=k, T(n-1,k-1), 0))); 1/m; \\ Michel Marcus, Jan 10 2023

Formula

T(2*n,2*k) = T(2*n+1,2*k+1) = -T(2*n+1,2*k) = binomial(n,k)*A000166(n-k) = (n!/k!)*Sum_{i = 0..n-k} (-1)^i/i!;
T(2*n,2*k+1) = -n*binomial(n-1,k)*A000166(n-k-1) = -(n!/k!)*Sum_{i = 0..n-k-1} (-1)^i/i!.
T(n,k) = T(n-k,0)*A211226(n,k).
Column entries:
T(2*n,0) = A000166(n), T(2*n,2) = A000240(n), T(2*n,4) = A000387(n), T(2*n,6) = A000449(n), T(2*n,8) = A000475(n).
From Manfred Boergens, Jan 10 2023: (Start)
With b(j) = floor(j/2); h = 1 for n even and k odd, h = 0 else:
T(n,k) = (-1)^(n+k)*(b(n)!/b(k)!)*Sum_{i = 0..b(n-k)-h} (-1)^i/i!.
Sum-free formula:
T(n,k) = (-1)^(n+k)*(b(n)!/b(k)!) for n-k < 2.
T(n,k) = (-1)^(n+k)*(b(n)!/b(k)!)*round((b(n-k)-h)!/exp(1))/(b(n-k)-h)!) otherwise. (End)

Extensions

More terms from Manfred Boergens, Jan 10 2023
Showing 1-10 of 18 results. Next