cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A332559 a(n) = n + A332558(n) + 1.

Original entry on oeis.org

6, 6, 6, 8, 10, 12, 12, 12, 15, 15, 18, 18, 20, 20, 20, 24, 24, 24, 24, 24, 28, 30, 30, 30, 30, 35, 35, 35, 36, 36, 40, 40, 40, 40, 40, 45, 45, 45, 45, 48, 48, 48, 54, 54, 54, 56, 56, 56, 56, 60, 60, 60, 60, 60, 60, 63, 70, 70, 70, 70, 70, 70, 70, 72, 72, 72
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local k,p;
      p:= n;
      for k from 1 do
        p:= p*(n+k);
        if (p/(n+k+1))::integer then return n+k+1 fi
      od
    end proc:
    map(f, [$1..100]); # Robert Israel, Feb 25 2020
  • Mathematica
    a[n_] := Module[{k, p = n}, For[k = 1, True, k++, p *= (n+k); If[Divisible[p, n+k+1], Return[n+k+1]]]];
    Array[a, 100] (* Jean-François Alcover, Jul 18 2020, after Maple *)
  • Python
    def a(n):
        k, p = 1, n*(n+1)
        while p%(n+k+1): k += 1; p *= (n+k)
        return n + k + 1
    print([a(n) for n in range(1, 67)]) # Michael S. Branicky, Jun 06 2021

A332560 a(n) = (n + A332558(n))!/(n-1)!.

Original entry on oeis.org

120, 120, 60, 840, 15120, 332640, 55440, 7920, 2162160, 240240, 98017920, 8910720, 253955520, 19535040, 1395360, 19769460480, 1235591280, 72681840, 4037880, 212520, 4475671200, 173059286400, 7866331200, 342014400, 14250600, 19033511777280, 732058145280
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • PARI
    a(n) = {my(r=n*(n+1)); for(k=2, oo, r=r*(n+k); if(r%(n+k+1)==0, return((n+k)!/(n-1)!))); } \\ Jinyuan Wang, Feb 25 2020

A061836 a(n) = smallest k>0 such that k+n divides k!.

Original entry on oeis.org

1, 5, 4, 3, 4, 5, 6, 5, 4, 6, 5, 7, 6, 7, 6, 5, 8, 7, 6, 5, 4, 7, 8, 7, 6, 5, 9, 8, 7, 7, 6, 9, 8, 7, 6, 5, 9, 8, 7, 6, 8, 7, 6, 11, 10, 9, 10, 9, 8, 7, 10, 9, 8, 7, 6, 5, 7, 13, 12, 11, 10, 9, 8, 7, 8, 7, 6, 13, 12, 11, 10, 9, 8, 7, 6, 9
Offset: 0

Views

Author

Robert G. Wilson v, Jun 22 2001

Keywords

Comments

Comments from M. F. Hasler, Feb 20 2020 (Start)
The index at which any n > 2 appears for the last time is given by A005096(n) = n! - n.
For m>2, a(n) > m for n > A005096(m).
The integer 1 appears only once as a(0), the integer 2 is the only positive integer which never appears. (End)
It would be nice to have an estimate for the growth of the upper envelope of this sequence - what is lim sup a(n)? The answer seems to be controlled by A333537. - N. J. A. Sloane, Apr 12 2020
Paul Zimmermann suggests that perhaps a(n) is O(log(n)^2). My estimate was n^(1/3), although that seems a bit low. - N. J. A. Sloane, Apr 09 2020

Crossrefs

Cf. A332584 for a "concatenation in base 10" variant.
See also A005096, A332558 (essentially identical to this one).
For records, see A333532 and A333533 (and A333537).

Programs

  • Mathematica
    f[n_] := (k = 1; While[ !IntegerQ[ k! / (k + n) ], k++ ]; k); Table[ f[n], {n, 0, 75} ]
  • PARI
    a(n) = my (f=1); for (k=1, oo, if ((f*=k)%(n+k)==0, return (k))) \\ Rémy Sigrist, Feb 17 2020

Extensions

"k>0" added to definition at the suggestion of Chai Wah Wu, Apr 09 2020. - N. J. A. Sloane, Apr 22 2020

A332542 a(n) is the smallest k such that n+(n+1)+(n+2)+...+(n+k) is divisible by n+k+1.

Original entry on oeis.org

2, 7, 14, 3, 6, 47, 14, 4, 10, 20, 25, 11, 5, 31, 254, 15, 18, 55, 6, 10, 22, 44, 14, 23, 11, 7, 86, 27, 30, 959, 62, 16, 34, 8, 73, 35, 17, 24, 163, 39, 42, 127, 9, 22, 46, 92, 62, 19, 23, 15, 158, 51, 10, 20, 75, 28, 58, 116, 121, 59, 29, 127, 254, 11
Offset: 3

Views

Author

Scott R. Shannon, Feb 18 2020

Keywords

Comments

Note that (n+(n+1)+(n+2)+...+(n+k))/(n+k+1) = A332544(n)/(n+k+1) = A082183(n-1). See the Myers et al. link for proof. - N. J. A. Sloane, Apr 30 2020
We can always take k = n^2-2*n-1, for then the sum in the definition becomes (n+1)*n*(n-1)*(n-2)/2, which is an integral multiple of n+k+1 = n*(n-1). So a(n) always exists. - N. J. A. Sloane, Feb 20 2020

Examples

			n=4: we get 4 -> 4+5=9 -> 9+6=15 -> 15+7=22 -> 22+8=30 -> 30+9=39 -> 39+10=49 -> 49+11=60, which is divisible by 12, and took k=7 steps, so a(4) = 7. Also A332543(4) = 12, A332544(4) = 60, and A082183(3) = 60/12 = 5.
		

Crossrefs

See A332558-A332561 for a multiplicative analog.

Programs

  • Maple
    grow2 := proc(n,M) local p,q,k; # searches out to a limit of M
    # returns n, k (A332542(n)), n+k+1 (A332543(n)), p (A332544(n)), and q (which appears to match A082183(n-1))
    for k from 1 to M do
       if ((k+1)*n + k*(k+1)/2) mod (n+k+1) = 0 then
       p := (k+1)*n+k*(k+1)/2;
       q := p/(n+k+1); return([n,k,n+k+1,p,q]);
       fi;
    od:
    # if no success, return -1's
    [n,-1,-1,-1,-1]; end; # N. J. A. Sloane, Feb 18 2020
  • Mathematica
    a[n_] := NestWhile[#1+1&,0,!IntegerQ[Divide[(#+1)*n+#*(#+1)/2,n+#+1]]&]
    a/@Range[3,100] (* Bradley Klee, Apr 30 2020 *)
  • PARI
    a(n) = my(k=1); while (sum(i=0, k, n+i) % (n+k+1), k++); k; \\ Michel Marcus, Aug 26 2021
    
  • Python
    def a(n):
        k, s = 1, 2*n+1
        while s%(n+k+1) != 0: k += 1; s += n+k
        return k
    print([a(n) for n in range(3, 67)]) # Michael S. Branicky, Aug 26 2021
  • Ruby
    def A(n)
      s = n
      t = n + 1
      while s % t > 0
        s += t
        t += 1
      end
      t - n - 1
    end
    def A332542(n)
      (3..n).map{|i| A(i)}
    end
    p A332542(100) # Seiichi Manyama, Feb 19 2020
    

A332561 a(n) = A332560(n)/A332559(n).

Original entry on oeis.org

20, 20, 10, 105, 1512, 27720, 4620, 660, 144144, 16016, 5445440, 495040, 12697776, 976752, 69768, 823727520, 51482970, 3028410, 168245, 8855, 159845400, 5768642880, 262211040, 11400480, 475020, 543814622208, 20915947008, 774664704, 941432800
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • PARI
    A332558(n) = {my(r=n*(n+1)); for(k=2, oo, r=r*(n+k); if(r%(n+k+1)==0, return(k))); }
    a(n) = {my(s=A332558(n)+n); s!/(n-1)!/(s+1); } \\ Jinyuan Wang, Feb 25 2020

A333537 Greatest prime factor of A332559.

Original entry on oeis.org

3, 3, 3, 2, 5, 3, 3, 3, 5, 5, 3, 3, 5, 5, 5, 3, 3, 3, 3, 3, 7, 5, 5, 5, 5, 7, 7, 7, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3, 3, 3, 3, 3, 3, 7, 7, 7, 7, 5, 5, 5, 5, 5, 5, 7, 7, 7, 7, 7, 7, 7, 7, 3, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5, 7, 7, 7, 5, 5, 5, 5, 5, 5, 5, 3, 3, 3, 3, 5, 5, 13, 7, 7, 7, 7, 7, 7, 7, 3, 7, 7, 7, 7, 7, 7, 5
Offset: 1

Views

Author

N. J. A. Sloane, Apr 12 2020

Keywords

Comments

For rate of growth, see the Myers et al. link. - N. J. A. Sloane, Apr 30 2020

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{k, p = n}, For[k = 1, True, k++, p *= (n+k); If[Divisible[ p, n+k+1], Return[FactorInteger[n+k+1][[-1, 1]]]]]];
    Array[a, 1000] (* Jean-François Alcover, Aug 17 2020 *)

A333532 Record high values in A061836.

Original entry on oeis.org

1, 5, 6, 7, 8, 9, 11, 13, 14, 16, 17, 18, 20, 21, 22, 24, 25, 27, 30, 32, 35, 40, 41, 45, 48, 49, 53, 54, 58, 62, 63, 64, 68, 72, 73, 76, 85, 86, 90, 102, 117, 136, 143, 144, 153, 154, 161, 165, 166, 182, 183, 187, 189, 200, 202, 217, 219, 233, 234, 235, 238, 249
Offset: 1

Views

Author

N. J. A. Sloane, Apr 08 2020

Keywords

Comments

Paul Zimmermann suggests that perhaps A061836(n) is O(log(n)^2). - N. J. A. Sloane, Apr 09 2020

Crossrefs

Extensions

More terms from Jinyuan Wang, Apr 08 2020

A333533 Indices of record high values in A061836.

Original entry on oeis.org

0, 1, 6, 11, 16, 26, 43, 57, 106, 144, 191, 222, 330, 518, 650, 666, 668, 1013, 1090, 1312, 2205, 2300, 3455, 4946, 5867, 6069, 7192, 12000, 12152, 12174, 17481, 23801, 24772, 26790, 29490, 36860, 39767, 60502, 65668, 87566, 87568, 172232, 293452, 434972, 453591
Offset: 1

Views

Author

N. J. A. Sloane, Apr 08 2020

Keywords

Comments

Paul Zimmermann suggests that perhaps A061836(n) is O(log(n)^2). - N. J. A. Sloane, Apr 09 2020

Crossrefs

Extensions

Name clarified and more terms from Jinyuan Wang, Apr 08 2020

A333538 Indices of records in A333537.

Original entry on oeis.org

1, 5, 21, 91, 355, 456, 666, 2927, 4946, 6064, 6188, 6192, 13858, 14884, 39592, 54429, 77603, 87566, 210905, 245770, 422097, 585876, 908602, 976209, 1240768, 1340675, 1573890, 2589172, 4740893, 5168099, 8525972, 8646462, 10478354, 12636785, 17943798, 19524935
Offset: 1

Views

Author

N. J. A. Sloane, Apr 12 2020

Keywords

Comments

The first few primes that are not record values of A333537 are 2, 11, 53, 59, 71, 73, 89, 97, 103, 107 (see A333541, A333542). - Robert Israel, Apr 12 2020
a(72) > 5*10^9. - David A. Corneth, Apr 14 2020

Crossrefs

Programs

  • Maple
    f:= proc(n) local k, p;
      p:= n;
      for k from 1 do
        p:= p*(n+k);
        if (p/(n+k+1))::integer then return n+k+1 fi
      od
    end proc:
    R:= 1: g:= 3: count:= 1:
    for n from 2 while count < 20 do
      x:= max(numtheory:-factorset(f(n)));
      if x > g then count:= count+1; g:= x; R:= R, n;  fi
    od:
    R; # Robert Israel, Apr 12 2020
  • Mathematica
    f[n_] := Module[{k, p = n}, For[k = 1, True, k++, p *= (n+k); If[Divisible[ p, n + k + 1], Return[FactorInteger[n + k + 1][[-1, 1]]]]]];
    R = {1}; g = 3; count = 1;
    For[n = 2, count < 20, n++, x = f[n]; If[x > g, count++; g = x; AppendTo[R, n]]];
    R (* Jean-François Alcover, Aug 17 2020, after Robert Israel *)

Extensions

a(13)-a(20) from Robert Israel, Apr 12 2020
More terms from Jinyuan Wang, Apr 12 2020

A333541 Records in A333537.

Original entry on oeis.org

3, 5, 7, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 61, 67, 79, 83, 101, 109, 113, 137, 139, 149, 151, 157, 167, 199, 211, 227, 239, 257, 269, 277, 283, 307, 313, 317, 353, 373, 379, 389, 397, 409, 433, 439, 499, 503, 569, 571, 593, 607, 617, 631, 701, 709, 727, 743, 757, 769, 773
Offset: 1

Views

Author

N. J. A. Sloane, Apr 20 2020, using data from Robert Israel's comment in A333538

Keywords

Comments

For the primes that are not records, see A333542.

Examples

			For n = 91 as A332558(91) = 12 we have (91 + A332558(91) + 1) = (91 + 12 + 1) | (91 * 92 * ... * (91 + 12)) = (91 * 92 * ... * (91 + A332558(91))). The largest prime factor of 91 + 12 + 1 = 104 is 13. For no m < 91 the largest prime factor of m + A332558(m) + 1 = A332559(m) is at least 13 so 13 is a new record in A333537. - _David A. Corneth_, Apr 21 2020
		

Crossrefs

Extensions

More terms from David A. Corneth, Apr 21 2020
Showing 1-10 of 14 results. Next