A332558 a(n) is the smallest k such that n*(n+1)*(n+2)*...*(n+k) is divisible by n+k+1.
4, 3, 2, 3, 4, 5, 4, 3, 5, 4, 6, 5, 6, 5, 4, 7, 6, 5, 4, 3, 6, 7, 6, 5, 4, 8, 7, 6, 6, 5, 8, 7, 6, 5, 4, 8, 7, 6, 5, 7, 6, 5, 10, 9, 8, 9, 8, 7, 6, 9, 8, 7, 6, 5, 4, 6, 12, 11, 10, 9, 8, 7, 6, 7, 6, 5, 12, 11, 10, 9, 8, 7, 6, 5, 8, 7, 6, 11, 10, 9, 8, 7, 6, 5
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- David A. Corneth, PARI program
- J. S. Myers, R. Schroeppel, S. R. Shannon, N. J. A. Sloane, and P. Zimmermann, Three Cousins of Recaman's Sequence, arXiv:2004.14000 [math.NT], April 2020.
Crossrefs
Programs
-
Maple
f:= proc(n) local k,p; p:= n; for k from 1 do p:= p*(n+k); if (p/(n+k+1))::integer then return k fi od end proc: map(f, [$1..100]); # Robert Israel, Feb 25 2020
-
Mathematica
a[n_] := Module[{k, p = n}, For[k = 1, True, k++, p *= (n+k); If[Divisible[p, n+k+1], Return[k]]]]; Array[a, 100] (* Jean-François Alcover, Jun 04 2020, after Maple *)
-
PARI
a(n) = {my(r=n*(n+1)); for(k=2, oo, r=r*(n+k); if(r%(n+k+1)==0, return(k))); } \\ Jinyuan Wang, Feb 25 2020
-
PARI
\\ See Corneth link
-
Python
def a(n): k, p = 1, n*(n+1) while p%(n+k+1): k += 1; p *= (n+k) return k print([a(n) for n in range(1, 85)]) # Michael S. Branicky, Jun 06 2021
Formula
a(n) = A061836(n) - 1 for n >= 1.
a(n + 1) >= a(n) - 1. a(n + 1) = a(n) - 1 mostly. - David A. Corneth, Apr 14 2020
Comments