cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A332561 a(n) = A332560(n)/A332559(n).

Original entry on oeis.org

20, 20, 10, 105, 1512, 27720, 4620, 660, 144144, 16016, 5445440, 495040, 12697776, 976752, 69768, 823727520, 51482970, 3028410, 168245, 8855, 159845400, 5768642880, 262211040, 11400480, 475020, 543814622208, 20915947008, 774664704, 941432800
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • PARI
    A332558(n) = {my(r=n*(n+1)); for(k=2, oo, r=r*(n+k); if(r%(n+k+1)==0, return(k))); }
    a(n) = {my(s=A332558(n)+n); s!/(n-1)!/(s+1); } \\ Jinyuan Wang, Feb 25 2020

A332558 a(n) is the smallest k such that n*(n+1)*(n+2)*...*(n+k) is divisible by n+k+1.

Original entry on oeis.org

4, 3, 2, 3, 4, 5, 4, 3, 5, 4, 6, 5, 6, 5, 4, 7, 6, 5, 4, 3, 6, 7, 6, 5, 4, 8, 7, 6, 6, 5, 8, 7, 6, 5, 4, 8, 7, 6, 5, 7, 6, 5, 10, 9, 8, 9, 8, 7, 6, 9, 8, 7, 6, 5, 4, 6, 12, 11, 10, 9, 8, 7, 6, 7, 6, 5, 12, 11, 10, 9, 8, 7, 6, 5, 8, 7, 6, 11, 10, 9, 8, 7, 6, 5
Offset: 1

Views

Author

Keywords

Comments

This is a multiplicative analog of A332542.
a(n) always exists because one can take k to be 2^m - 1 for m large.

Crossrefs

Cf. A061836 (k+1), A332559 (n+k+1), A332560 (the final product), A332561 (the quotient).
For records, see A333532 and A333533 (and A333537), which give the records in the essentially identical sequence A061836.
Additive version: A332542, A332543, A332544, A081123.
"Concatenate in base 10" version: A332580, A332584, A332585.

Programs

  • Maple
    f:= proc(n) local k,p;
      p:= n;
      for k from 1 do
        p:= p*(n+k);
        if (p/(n+k+1))::integer then return k fi
      od
    end proc:
    map(f, [$1..100]); # Robert Israel, Feb 25 2020
  • Mathematica
    a[n_] := Module[{k, p = n}, For[k = 1, True, k++, p *= (n+k); If[Divisible[p, n+k+1], Return[k]]]];
    Array[a, 100] (* Jean-François Alcover, Jun 04 2020, after Maple *)
  • PARI
    a(n) = {my(r=n*(n+1)); for(k=2, oo, r=r*(n+k); if(r%(n+k+1)==0, return(k))); } \\ Jinyuan Wang, Feb 25 2020
    
  • PARI
    \\ See Corneth link
    
  • Python
    def a(n):
        k, p = 1, n*(n+1)
        while p%(n+k+1): k += 1; p *= (n+k)
        return k
    print([a(n) for n in range(1, 85)]) # Michael S. Branicky, Jun 06 2021

Formula

a(n) = A061836(n) - 1 for n >= 1.
a(n + 1) >= a(n) - 1. a(n + 1) = a(n) - 1 mostly. - David A. Corneth, Apr 14 2020

A332559 a(n) = n + A332558(n) + 1.

Original entry on oeis.org

6, 6, 6, 8, 10, 12, 12, 12, 15, 15, 18, 18, 20, 20, 20, 24, 24, 24, 24, 24, 28, 30, 30, 30, 30, 35, 35, 35, 36, 36, 40, 40, 40, 40, 40, 45, 45, 45, 45, 48, 48, 48, 54, 54, 54, 56, 56, 56, 56, 60, 60, 60, 60, 60, 60, 63, 70, 70, 70, 70, 70, 70, 70, 72, 72, 72
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local k,p;
      p:= n;
      for k from 1 do
        p:= p*(n+k);
        if (p/(n+k+1))::integer then return n+k+1 fi
      od
    end proc:
    map(f, [$1..100]); # Robert Israel, Feb 25 2020
  • Mathematica
    a[n_] := Module[{k, p = n}, For[k = 1, True, k++, p *= (n+k); If[Divisible[p, n+k+1], Return[n+k+1]]]];
    Array[a, 100] (* Jean-François Alcover, Jul 18 2020, after Maple *)
  • Python
    def a(n):
        k, p = 1, n*(n+1)
        while p%(n+k+1): k += 1; p *= (n+k)
        return n + k + 1
    print([a(n) for n in range(1, 67)]) # Michael S. Branicky, Jun 06 2021

A333537 Greatest prime factor of A332559.

Original entry on oeis.org

3, 3, 3, 2, 5, 3, 3, 3, 5, 5, 3, 3, 5, 5, 5, 3, 3, 3, 3, 3, 7, 5, 5, 5, 5, 7, 7, 7, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3, 3, 3, 3, 3, 3, 7, 7, 7, 7, 5, 5, 5, 5, 5, 5, 7, 7, 7, 7, 7, 7, 7, 7, 3, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5, 7, 7, 7, 5, 5, 5, 5, 5, 5, 5, 3, 3, 3, 3, 5, 5, 13, 7, 7, 7, 7, 7, 7, 7, 3, 7, 7, 7, 7, 7, 7, 5
Offset: 1

Views

Author

N. J. A. Sloane, Apr 12 2020

Keywords

Comments

For rate of growth, see the Myers et al. link. - N. J. A. Sloane, Apr 30 2020

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{k, p = n}, For[k = 1, True, k++, p *= (n+k); If[Divisible[ p, n+k+1], Return[FactorInteger[n+k+1][[-1, 1]]]]]];
    Array[a, 1000] (* Jean-François Alcover, Aug 17 2020 *)
Showing 1-4 of 4 results.