cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A001813 Quadruple factorial numbers: a(n) = (2n)!/n!.

Original entry on oeis.org

1, 2, 12, 120, 1680, 30240, 665280, 17297280, 518918400, 17643225600, 670442572800, 28158588057600, 1295295050649600, 64764752532480000, 3497296636753920000, 202843204931727360000, 12576278705767096320000, 830034394580628357120000, 58102407620643984998400000
Offset: 0

Views

Author

Keywords

Comments

Counts binary rooted trees (with out-degree <= 2), embedded in plane, with n labeled end nodes of degree 1. Unlabeled version gives Catalan numbers A000108.
Define a "downgrade" to be the permutation which places the items of a permutation in descending order. We are concerned with permutations that are identical to their downgrades. Only permutations of order 4n and 4n+1 can have this property; the number of permutations of length 4n having this property are equinumerous with those of length 4n+1. If a permutation p has this property then the reversal of this permutation also has it. a(n) = number of permutations of length 4n and 4n+1 that are identical to their downgrades. - Eugene McDonnell (eemcd(AT)mac.com), Oct 26 2003
Number of broadcast schemes in the complete graph on n+1 vertices, K_{n+1}. - Calin D. Morosan (cd_moros(AT)alumni.concordia.ca), Nov 28 2008
Hankel transform is A137565. - Paul Barry, Nov 25 2009
The e.g.f. of 1/a(n) = n!/(2*n)! is (exp(sqrt(x)) + exp(-sqrt(x)) )/2. - Wolfdieter Lang, Jan 09 2012
From Tom Copeland, Nov 15 2014: (Start)
Aerated with intervening zeros (1,0,2,0,12,0,120,...) = a(n) (cf. A123023 and A001147), the e.g.f. is e^(t^2), so this is the base for the Appell sequence with e.g.f. e^(t^2) e^(x*t) = exp(P(.,x),t) (reverse A059344, cf. A099174, A066325 also). P(n,x) = (a. + x)^n with (a.)^n = a_n and comprise the umbral compositional inverses for e^(-t^2)e^(x*t) = exp(UP(.,x),t), i.e., UP(n,P(.,t)) = x^n = P(n,UP(.,t)), e.g., (P(.,t))^n = P(n,t).
Equals A000407*2 with leading 1 added. (End)
a(n) is also the number of square roots of any permutation in S_{4*n} whose disjoint cycle decomposition consists of 2*n transpositions. - Luis Manuel Rivera Martínez, Mar 04 2015
Self-convolution gives A076729. - Vladimir Reshetnikov, Oct 11 2016
For n > 1, it follows from the formula dated Aug 07 2013 that a(n) is a Zumkeller number (A083207). - Ivan N. Ianakiev, Feb 28 2017
For n divisible by 4, a(n/4) is the number of ways to place n points on an n X n grid with pairwise distinct abscissae, pairwise distinct ordinates, and 90-degree rotational symmetry. For n == 1 (mod 4), the number of ways is a((n-1)/4) because the center point can be considered "fixed". For 180-degree rotational symmetry see A006882, for mirror symmetry see A000085, A135401, and A297708. - Manfred Scheucher, Dec 29 2017

Examples

			The following permutations of order 8 and their reversals have this property:
  1 7 3 5 2 4 0 6
  1 7 4 2 5 3 0 6
  2 3 7 6 1 0 4 5
  2 4 7 1 6 0 3 5
  3 2 6 7 0 1 5 4
  3 5 1 7 0 6 2 4
		

References

  • D. E. Knuth, The Art of Computer Programming, Vol. 4, Section 7.2.1.6, Eq. 32.
  • L. C. Larson, The number of essentially different nonattacking rook arrangements, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180-181.
  • Eugene McDonnell, "Magic Squares and Permutations" APL Quote-Quad 7.3 (Fall, 1976)
  • R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    List([0..20],n->Factorial(2*n)/Factorial(n)); # Muniru A Asiru, Nov 01 2018
    
  • Magma
    [Factorial(2*n)/Factorial(n): n in [0..20]]; // Vincenzo Librandi, Oct 09 2018
    
  • Maple
    A001813 := n->(2*n)!/n!;
    A001813 := n -> mul(k, k = select(k-> k mod 4 = 2,[$1 .. 4*n])):
    seq(A001813(n), n=0..16);  # Peter Luschny, Jun 23 2011
  • Mathematica
    Table[(2n)!/n!, {n,0,20}] (* Harvey P. Dale, May 02 2011 *)
  • Maxima
    makelist(binomial(n+n, n)*n!,n,0,30); /* Martin Ettl, Nov 05 2012 */
    
  • PARI
    a(n)=binomial(n+n,n)*n! \\ Charles R Greathouse IV, Jun 15 2011
    
  • PARI
    first(n) = x='x+O('x^n); Vec(serlaplace((1 - 4*x)^(-1/2))) \\ Iain Fox, Jan 01 2018 (corrected by Iain Fox, Jan 11 2018)
    
  • Python
    from math import factorial
    def A001813(n): return factorial(n<<1)//factorial(n) # Chai Wah Wu, Feb 14 2023
  • Sage
    [binomial(2*n,n)*factorial(n) for n in range(0, 17)] # Zerinvary Lajos, Dec 03 2009
    

Formula

E.g.f.: (1-4*x)^(-1/2).
a(n) = (2*n)!/n! = Product_{k=0..n-1} (4*k + 2) = A081125(2*n).
Integral representation as n-th moment of a positive function on a positive half-axis: a(n) = Integral_{x=0..oo} x^n*exp(-x/4)/(sqrt(x)*2*sqrt(Pi)) dx, n >= 0. This representation is unique. - Karol A. Penson, Sep 18 2001
Define a'(1)=1, a'(n) = Sum_{k=1..n-1} a'(n-k)*a'(k)*C(n, k); then a(n)=a'(n+1). - Benoit Cloitre, Apr 27 2003
With interpolated zeros (1, 0, 2, 0, 12, ...) this has e.g.f. exp(x^2). - Paul Barry, May 09 2003
a(n) = A000680(n)/A000142(n)*A000079(n) = Product_{i=0..n-1} (4*i + 2) = 4^n*Pochhammer(1/2, n) = 4^n*GAMMA(n+1/2)/sqrt(Pi). - Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003
For asymptotics, see the Robinson paper.
a(k) = (2*k)!/k! = Sum_{i=1..k+1} |A008275(i,k+1)| * k^(i-1). - André F. Labossière, Jun 21 2007
a(n) = 12*A051618(a) n >= 2. - Zerinvary Lajos, Feb 15 2008
a(n) = A000984(n)*A000142(n). - Zerinvary Lajos, Mar 25 2008
a(n) = A016825(n-1)*a(n-1). - Roger L. Bagula, Sep 17 2008
a(n) = (-1)^n*A097388(n). - D. Morosan (cd_moros(AT)alumni.concordia.ca), Nov 28 2008
From Paul Barry, Jan 15 2009: (Start)
G.f.: 1/(1-2x/(1-4x/(1-6x/(1-8x/(1-10x/(1-... (continued fraction);
a(n) = (n+1)!*A000108(n). (End)
a(n) = Sum_{k=0..n} A132393(n,k)*2^(2n-k). - Philippe Deléham, Feb 10 2009
G.f.: 1/(1-2x-8x^2/(1-10x-48x^2/(1-18x-120x^2/(1-26x-224x^2/(1-34x-360x^2/(1-42x-528x^2/(1-... (continued fraction). - Paul Barry, Nov 25 2009
a(n) = A173333(2*n,n) for n>0; cf. A006963, A001761. - Reinhard Zumkeller, Feb 19 2010
From Gary W. Adamson, Jul 19 2011: (Start)
a(n) = upper left term of M^n, M = an infinite square production matrix as follows:
2, 2, 0, 0, 0, 0, ...
4, 4, 4, 0, 0, 0, ...
6, 6, 6, 6, 0, 0, ...
8, 8, 8, 8, 8, 0, ...
...
(End)
a(n) = (-2)^n*Sum_{k=0..n} 2^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
G.f.: 1/Q(0), where Q(k) = 1 + x*(4*k+2) - x*(4*k+4)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 18 2013
G.f.: 2/G(0), where G(k) = 1 + 1/(1 - x*(8*k+4)/(x*(8*k+4) - 1 + 8*x*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 30 2013
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - 2*x/(2*x + 1/(2*k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 01 2013
D-finite with recurrence: a(n) = (4*n-6)*a(n-2) + (4*n-3)*a(n-1), n>=2. - Ivan N. Ianakiev, Aug 07 2013
Sum_{n>=0} 1/a(n) = (exp(1/4)*sqrt(Pi)*erf(1/2) + 2)/2 = 1 + A214869, where erf(x) is the error function. - Ilya Gutkovskiy, Nov 10 2016
Sum_{n>=0} (-1)^n/a(n) = 1 - sqrt(Pi)*erfi(1/2)/(2*exp(1/4)), where erfi(x) is the imaginary error function. - Amiram Eldar, Feb 20 2021
a(n) = 1/([x^n] hypergeom([1], [1/2], x/4)). - Peter Luschny, Sep 13 2024
a(n) = 2^n*n!*JacobiP(n, -1/2, -n, 3). - Peter Luschny, Jan 22 2025
G.f.: 2F0(1,1/2;;4x). - R. J. Mathar, Jun 07 2025

Extensions

More terms from James Sellers, May 01 2000

A000407 a(n) = (2*n+1)! / n!.

Original entry on oeis.org

1, 6, 60, 840, 15120, 332640, 8648640, 259459200, 8821612800, 335221286400, 14079294028800, 647647525324800, 32382376266240000, 1748648318376960000, 101421602465863680000, 6288139352883548160000, 415017197290314178560000
Offset: 0

Views

Author

Keywords

Comments

The e.g.f. of 1/a(n) = n!/(2*n+1)! is (exp(sqrt(x)) - exp(-sqrt(x)))/(2*sqrt(x)). - Wolfdieter Lang, Jan 09 2012
Product of the larger parts of the partitions of 2n+2 into exactly two parts. - Wesley Ivan Hurt, Jun 15 2013
For n > 0, a(n-1) = (2n-1)!/(n-1)!, the number of ways n people can line up in n labeled queues. The derivation is straightforward. Person 1 has (2n-1) choices - be first in line in one of the queues or get behind one of the other people. Person 2 has (2n-2) choices - choose one of the n queues or get behind one of the remaining n-2 people. Continuing in this fashion, we finally find that person n has to choose one of the n queues. - Dennis P. Walsh, Mar 24 2016
For n > 0, a(n-1) is the number of functions f:[n]->[2n] that are acyclic and injective. Note that f is acyclic if, for all x in [n], x is not a member of the set {f(x),f(f(x)), f(f(f(x))), ...}. - Dennis P. Walsh, Mar 25 2016
a(n) is the number of labeled maximal outerplanar graphs with n-3 vertices. - Allan Bickle, Feb 19 2024

Examples

			G.f. = 1 + 6*x + 60*x^2 + 840*x^3 + 15120*x^4 + 332640*x^5 + 8648640*x^6 + ...
For n=1 the a(1)=6 ways for 2 people to line up in 2 queues are as follows: Q1<P1,P2> Q2<>, Q1<P2,P1> Q2<>, Q1<P1> Q2<P2>, Q1<P2> Q2<P1>, Q1<> Q2<P1,P2>, Q1<> Q2<P2,P1>. - _Dennis P. Walsh_, Mar 24 2016
For the unique maximal outerplanar graph with 4 vertices, there are C(4,2)=6 ways to label the two degree 3 vertices, and the other two labels are forced.  Thus a(1) = 6.
		

References

  • L. W. Beineke and R. E. Pippert, Enumerating labeled k-dimensional trees and ball dissections, pp. 12-26 of Proceedings of Second Chapel Hill Conference on Combinatorial Mathematics and Its Applications, University of North Carolina, Chapel Hill, 1970. Reprinted with a slightly different title in Math. Annalen, 191 (1971), 87-98.
  • L. B. W. Jolley, Summation of Series, Dover, 1961.
  • Loren C. Larson, The number of essentially different nonattacking rook arrangements, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180-181.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A100622 is the "Number of topologically distinct solutions to the clone ordering problem for n clones" without the restriction that they be in a single contig (see [Newberg] for definition of contig).
Column m=0 of A292219.

Programs

  • Magma
    [Factorial(2*n+1) / Factorial(n): n in [0..20]]; // Vincenzo Librandi, Jun 16 2015
  • Maple
    For Maple program see A000903.
    a := n -> pochhammer(n+1,n+1); (for n>=0) # Peter Luschny, Feb 14 2009
  • Mathematica
    Table[(2n + 1)!/n!, {n, 0, 30}] (* Stefan Steinerberger, Apr 08 2006 *)
    a[ n_] := If[ n < 0, 1/2, 1] Pochhammer[ n + 1, n + 1]; (* Michael Somos, Jan 03 2015 *)
    a[ n_] := Which[ n < -1, -(-1)^n / (4 a[-n - 2]), n == -1, 1/2, True, (2 n + 1)! / n!]; (* Michael Somos, Jan 03 2015 *)
  • Maxima
    A000407(n):=(2*n+1)!/n!$
    makelist(A000407(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
    
  • PARI
    a(n)=(2*n+1)!/n! \\ Charles R Greathouse IV, Jan 12 2012
    
  • PARI
    {a(n) = if( n<-1, -(-1)^n / (4 * a(-n-2)), n==-1, 1/2, (2*n + 1)! / n!)}; /* Michael Somos, Jan 03 2015 */
    

Formula

E.g.f.: (1 - 4*x)^(-3/2). - Michael Somos, Jan 03 2015
E.g.f.: Sum_{k>=0} a(k+2) * x^k / k! = (1 - 2*x - sqrt(1 - 4*x)) / 4.
E.g.f. for a(n-1), n >= 0, with a(-1) := 0 is (-1+1/(1-4*x)^(1/2))/2. 2*a(n) = (4*n+2)(!^4) := Product_{j=0..n} (4*j + 2), (one half of 4-factorial numbers). - Wolfdieter Lang
a(n) = C(n+1)*(n+2)!/2 for all n>=0. - Paul Barry, Feb 16 2005
For n>1, a(n) = (1/2)*A001813(n+1). - Zerinvary Lajos, Jun 06 2007
For asymptotics see the Robinson paper.
Sum_{n >=0} n!/a(n) = 2*Pi/3^(3/2) = 1.2091995761... = A248897 [Jolley eq 261]
G.f.: 1 / (1 - 6*x / (1 - 4*x / (1 - 10*x / (1 - 8*x / (1 - 14*x / ... ))))). - Michael Somos, May 12 2012
G.f.: 1/Q(0), where Q(k) = 1 + 2*(2*k-1)*x - 4*x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 03 2013
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - 2*x/(2*x + 1/(2*k+3)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 02 2013
a(n) = -(-1)^n / (4 * a(-2-n)) = a(n-1) * (4*n+2) for all n in Z. - Michael Somos, Jan 03 2015
a(n) = A087299(2*n + 1). - Michael Somos, Jan 03 2015
From Peter Bala, Feb 16 2015: (Start)
Recurrence equation: a(n) = 4*a(n-1) + 4*(2*n - 1)^2*a(n-2) with a(0) = 1 and a(1) = 6.
The integer sequence b(n) := a(n)*Sum_{k = 0..n} (-1)^k/(2*k + 1), beginning [1, 4, 52, 608, 12624, ...], satisfies the same second-order recurrence equation. This leads to Brouncker's generalized continued fraction expansion Sum_{k >= 0} (-1)^k/(2*k + 1) = Pi/4 = 1/(1 + 1^2/(2 + 3^2/(2 + 5^2/(2 + ... )))). Note b(n) = 2^n*A024199(n+1).
Recurrence equation: a(n) = (5*n + 2)*a(n-1) - 2*n*(2*n - 1)^2*a(n-2) with a(0) = 1 and a(1) = 6.
The integer sequence c(n) := a(n)*Sum_{k = 0..n} k!^2/(2*k + 1)!, beginning [1, 7, 72, 1014, 18276, ... ], satisfies the same second-order recurrence equation. This leads to the generalized continued fraction expansion Sum_{k >= 0} k!^2/(2*k + 1)! = 2*Pi/sqrt(27) = 2*A073010 = 1/(1 - 1/(7 - 12/(12 - 30/(17 - ... - 2*n*(2*n - 1)/((5*n + 2) - ... ))))). (End)
a(n) = Product_{k=n+1..(2*n+1)} k. - Carlos Eduardo Olivieri, Jun 03 2015
From Ilya Gutkovskiy, Jan 17 2017: (Start)
a(n) ~ 2^(2*n+3/2)*n^(n+1)/exp(n).
Sum_{n>=0} 1/a(n) = exp(1/4)*sqrt(Pi)*erf(1/2) = 1.184593072938653151..., where erf() is the error function. (End)
Sum_{n>=0} (-1)^n/a(n) = exp(-1/4)*sqrt(Pi)*erfi(1/2), where erfi() is the imaginary error function. - Amiram Eldar, Jan 18 2021
It follows from the comments above that we have a(n) = a(n-1)*(4*n+2), with a(1) = 6, a(0) = 1.
a(n) = A081125(2*n+1). - R. J. Mathar, Jun 07 2025

A081123 a(n) = floor(n/2)!.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 6, 6, 24, 24, 120, 120, 720, 720, 5040, 5040, 40320, 40320, 362880, 362880, 3628800, 3628800, 39916800, 39916800, 479001600, 479001600, 6227020800, 6227020800, 87178291200, 87178291200, 1307674368000, 1307674368000, 20922789888000, 20922789888000
Offset: 0

Views

Author

Paul Barry, Mar 07 2003

Keywords

Comments

This is the product of the first parts of the partitions (as nondecreasing list of parts) of n with exactly two positive integer parts, n > 1. - Wesley Ivan Hurt, Jan 25 2013

Examples

			a(8) = 24, since 8 has 4 nondecreasing partitions with exactly two positive integer parts: (1,7),(2,6),(3,5),(4,4).  Multiplying the first parts of these partitions together, we get: (1)(2)(3)(4) = 4! = 24. - _Wesley Ivan Hurt_, Jun 03 2013
		

Crossrefs

Programs

Formula

a(n) = floor(n/2)!.
E.g.f.: 1+sqrt(Pi)/2*(x+2)*exp(x^2/4)*erf(x/2). - Vladeta Jovovic, Sep 25 2003
From Sergei N. Gladkovskii, Jul 28 2012: (Start)
G.f. G(0) where G(k) = 1 + x/(1 - x*(k+1)/( x*(k+1) + 1/G(k+1))); (continued fraction, 3rd kind, 3-step ).
E.g.f. 1 + sqrt(Pi)/2*(x+2)*exp(x^2/4)*erf(x/2) = 1 + x/(G(0)-x) where G(k) = 2*k + 1 + x - (2*k+1)*x/(x + 2 - 2*x/G(k+1)); (continued fraction, 1st kind, 2-step).
(End)
G.f.: U(0) where U(k) = 1 + x/(1 - x*(k+2)/(x*(k+2) + 1/U(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Oct 23 2012
G.f.: U(0) where U(k) = 1 + x/((2*k+1) - x*(2*k+1)/(x + 2*1/U(k+1))) ; (continued fraction, 3-step). - Sergei N. Gladkovskii, Oct 23 2012
G.f.: 1 + x*G(0) where G(k) = 1 + x*(k+1)/(1 - x/(x + 1/G(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Nov 18 2012

A018191 a(n) = Sum_{k=0..n} binomial(n, k) * k! / floor(k/2)!.

Original entry on oeis.org

1, 2, 5, 16, 53, 206, 817, 3620, 16361, 80218, 401501, 2139512, 11641885, 66599846, 388962953, 2367284236, 14700573137, 94523836850, 619674301621, 4186249123808, 28809504493061, 203556335785342, 1463877667140065, 10777146970619636, 80686484464418233
Offset: 0

Views

Author

Alexander Stoimenow (stoimeno(AT)math.toronto.edu)

Keywords

Comments

Binomial transform of { n!/floor(n/2)! }.
Number of symmetric chord diagrams of degree n-1.
Row sums of exponential Riordan array [(1+x), x(1+x)]. - Paul Barry, Apr 17 2007

Crossrefs

Programs

  • Maple
    f:=n-> add(binomial(n,k)*k!/floor(k/2)!, k=0..n); [seq(f(n),n=1..40)]; # N. J. A. Sloane, Sep 25 2021
  • Mathematica
    a[n_] := Sum[Binomial[n-1, k] k! / Floor[k/2]!, {k, 0, n}];
    Array[a, 25] (* Jean-François Alcover, Aug 29 2019 *)
    Table[n!*SeriesCoefficient[(1+x)*E^(x+x^2),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 13 2012 *)

Formula

a(n) = A047974(n-1) + (n-1)*A047974(n-2). - Vladeta Jovovic, Aug 06 2006
E.g.f.: (1 + x)*exp(x + x^2). - Vladeta Jovovic, Aug 06 2006
Recurrence: (n-2)*a(n) = (n-3)*a(n-1) + 2*(n-1)^2*a(n-2). - Vaclav Kotesovec, Oct 13 2012
a(n) ~ 2^(n/2 - 1)*exp(sqrt(n/2) - n/2 - 1/8)*n^(n/2 + 1/2)*(1 + 85/96*sqrt(2)/sqrt(n)). - Vaclav Kotesovec, Oct 13 2012
a(n) = -(n-3)*a(n-1) + 3*(n-1)*a(n-2) + 2*(n-1)*(n-2)*a(n-3) for n > 2. - Seiichi Manyama, Nov 12 2024

Extensions

Entry revised by N. J. A. Sloane, Sep 25 2021

A211374 Product of all the parts in the partitions of n into exactly 2 parts.

Original entry on oeis.org

1, 1, 2, 12, 24, 360, 720, 20160, 40320, 1814400, 3628800, 239500800, 479001600, 43589145600, 87178291200, 10461394944000, 20922789888000, 3201186852864000, 6402373705728000, 1216451004088320000, 2432902008176640000, 562000363888803840000
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 06 2013

Keywords

Examples

			Define a(1):=1; a(2) = 1 since 2 = 1+1 and (1)*(1) = 1; a(3) = 2 since 3 = 2+1 and (2)*(1) = 2; a(4) = 12 since 4 = 3+1 = 2+2 and (3)*(1)*(2)*(2) = 12; a(5) = 24 since 5 = 4+1 = 3+2 and (4)*(1)*(3)*(2) = 24.
		

Crossrefs

Programs

  • Magma
    [(Factorial(n-1) * Factorial(Floor(n/2)))/Factorial(n-1-Floor(n/2)) : n in [1..25]]; // Wesley Ivan Hurt, Oct 16 2014
    
  • Maple
    A211374:=n->( (n-1)! * floor(n/2)! )/( (n-1) - floor(n/2) )!: seq(A211374(k), k=1..25);
    with(combinat, numbperm): seq(numbperm(k-1, floor(k/2))*floor(k/2)!, k = 1..25); # Wesley Ivan Hurt, Jun 07 2013
  • Mathematica
    Table[Times @@ Flatten[Select[Partitions[n], Length[#] == 2 &]], {n, 25}] (* T. D. Noe, Feb 11 2013 *)
    Table[((n - 1)!*Floor[n/2]!)/(n - 1 - Floor[n/2])!, {n, 25}] (* Wesley Ivan Hurt, Oct 16 2014 *)
  • PARI
    a(n) = prod(i=1, n\2, i*(n-i)); \\ Michel Marcus, Nov 14 2017

Formula

a(n) = ( (n-1)! * floor(n/2)! )/( n-1-floor(n/2) )!.
a(n) = P(n-1, floor(n/2)) * floor(n/2)!, where P(n,k) are the k-permutations of n objects. - Wesley Ivan Hurt, Jun 07 2013
a(2n) = A002674(n); a(2n+1) = A010050(n). - Wesley Ivan Hurt, Oct 16 2014
a(n) = Product_{i=1..floor(n/2)} i * (n-i). - Wesley Ivan Hurt, Nov 14 2017
From Amiram Eldar, Mar 10 2022: (Start)
Sum_{n>=1} 1/a(n) = 3*cosh(1) - 2.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2 - cosh(1). (End)

A355989 a(n) = n! / (2 * floor(n/2)!).

Original entry on oeis.org

1, 3, 6, 30, 60, 420, 840, 7560, 15120, 166320, 332640, 4324320, 8648640, 129729600, 259459200, 4410806400, 8821612800, 167610643200, 335221286400, 7039647014400, 14079294028800, 323823762662400, 647647525324800, 16191188133120000, 32382376266240000
Offset: 2

Views

Author

Seiichi Manyama, Jul 22 2022

Keywords

Crossrefs

Column 2 of A355996.

Programs

  • Mathematica
    a[n_] := n!/(2 * Floor[n/2]!); Array[a, 25, 2] (* Amiram Eldar, Jul 22 2022 *)
  • PARI
    a(n) = n!/(2*(n\2)!);
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace((1-x^2)*(exp(x^2)-1)/(2*(1-x))))
    
  • Python
    from math import factorial, floor
    def a(n): return int(factorial(n)/(2*factorial(floor(n/2))))
    print([a(n) for n in range(2, 30)]) # Javier Rivera Romeu, Jul 22 2022
    
  • Python
    from sympy import rf
    def A355989(n): return rf((m:=n+1>>1)+(n+1&1),m)>>1 # Chai Wah Wu, Jul 22 2022

Formula

E.g.f.: (1 - x^2) * (exp(x^2) - 1)/(2 * (1 - x)).
a(n) = A081125(n)/2.
From Amiram Eldar, Jul 26 2022: (Start)
Sum_{n>=2} 1/a(n) = 3*exp(1/4)*sqrt(Pi)*erf(1/2) - 2, where erf is the error function.
Sum_{n>=2} (-1)^n/a(n) = 2 - exp(1/4)*sqrt(Pi)*erf(1/2). (End)

A355988 a(n) = n! / floor(n/3)!.

Original entry on oeis.org

1, 1, 2, 6, 24, 120, 360, 2520, 20160, 60480, 604800, 6652800, 19958400, 259459200, 3632428800, 10897286400, 174356582400, 2964061900800, 8892185702400, 168951528345600, 3379030566912000, 10137091700736000, 223016017416192000, 5129368400572416000
Offset: 0

Views

Author

Seiichi Manyama, Jul 22 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n!/Floor[n/3]!; Array[a, 24, 0] (* Amiram Eldar, Jul 22 2022 *)
  • PARI
    a(n) = n!/(n\3)!;
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace((1-x^3)*exp(x^3)/(1-x)))

Formula

E.g.f.: (1 - x^3) * exp(x^3)/(1 - x).

A193282 a(n) = (n!/floor(n/2)!)^2.

Original entry on oeis.org

1, 1, 4, 36, 144, 3600, 14400, 705600, 2822400, 228614400, 914457600, 110649369600, 442597478400, 74798973849600, 299195895398400, 67319076464640000, 269276305858560000, 77820852393123840000, 311283409572495360000, 112373310855670824960000
Offset: 0

Views

Author

Peter Luschny, Sep 08 2011

Keywords

Crossrefs

Programs

  • Magma
    [(Factorial(n)/Factorial(Floor(n/2)))^2: n in [0..20]]; // Vincenzo Librandi, Sep 11 2011
  • Maple
    A193282 := n -> (n!/iquo(n,2)!)^2;
  • Mathematica
    Table[(n!/(Floor[n/2]!))^2,{n,0,20}] (* Harvey P. Dale, Jul 30 2020 *)

Formula

a(n) = A056040(n)*A000142(n).
a(n) = A081125(n)^2.
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*A195009(n,k).
a(n) = n!^2*[x^n] (1+x)*BesselI(0,2*x). Here [x^n]f(x) denotes the coefficient of x^n in f(x).
Conjecture: a(n) + 8*a(n-1) - 4*(n-2)*(n+2)*a(n-2) + 16*(-2*n^2 + 6*n - 3)*a(n-3) - 64*(n-3)^2*a(n-4) = 0. - R. J. Mathar, Oct 03 2014

A355987 a(n) = n! * Sum_{k=1..n} 1/floor(n/k)!.

Original entry on oeis.org

1, 3, 13, 61, 421, 2641, 23521, 203281, 2071441, 22407841, 286403041, 3453468481, 51122111041, 759194916481, 12216117513601, 203300293996801, 3811792426041601, 69634723878720001, 1444704854104512001, 29725332567567436801, 658231789483184716801
Offset: 1

Views

Author

Seiichi Manyama, Jul 22 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n! * Sum[1/Floor[n/k]!, {k, 1, n}]; Array[a, 21] (* Amiram Eldar, Jul 22 2022 *)
  • PARI
    a(n) = n!*sum(k=1, n, 1/(n\k)!);
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=1,N, (1-x^k)*(exp(x^k)-1))/(1-x)))

Formula

E.g.f.: (1/(1-x)) * Sum_{k>0} (1 - x^k) * (exp(x^k) - 1).
a(n) ~ c * n! * n, where c = 0.59962032... - Vaclav Kotesovec, Aug 03 2022
Conjecture: c = Sum_{k>=1} 1/((k+1)!*k) = 2 - exp(1) - A001620 + A091725. - Vaclav Kotesovec, Sep 24 2023

A370890 A(n, k) = 2^n*Pochhammer(k/2, floor((n+1)/2)). Square array read by ascending antidiagonals.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 6, 4, 3, 1, 0, 12, 16, 6, 4, 1, 0, 60, 32, 30, 8, 5, 1, 0, 120, 192, 60, 48, 10, 6, 1, 0, 840, 384, 420, 96, 70, 12, 7, 1, 0, 1680, 3072, 840, 768, 140, 96, 14, 8, 1, 0, 15120, 6144, 7560, 1536, 1260, 192, 126, 16, 9, 1
Offset: 0

Views

Author

Peter Luschny, Mar 04 2024

Keywords

Examples

			The array starts:
[0] 1,  1,   1,   1,   1,    1,    1,    1,    1,    1, ...
[1] 0,  1,   2,   3,   4,    5,    6,    7,    8,    9, ...
[2] 0,  2,   4,   6,   8,   10,   12,   14,   16,   18, ...
[3] 0,  6,  16,  30,  48,   70,   96,  126,  160,  198, ...
[4] 0, 12,  32,  60,  96,  140,  192,  252,  320,  396, ...
[5] 0, 60, 192, 420, 768, 1260, 1920, 2772, 3840, 5148, ...
.
Seen as the triangle T(n, k) = A(n - k, k):
[0] 1;
[1] 0,   1;
[2] 0,   1,   1;
[3] 0,   2,   2,  1;
[4] 0,   6,   4,  3,  1;
[5] 0,  12,  16,  6,  4,  1;
[6] 0,  60,  32, 30,  8,  5, 1;
[7] 0, 120, 192, 60, 48, 10, 6, 1;
		

Crossrefs

Programs

  • Maple
    A := (n, k) -> 2^n*pochhammer(k/2, iquo(n+1,2)):
    for n from 0 to 5 do seq(A(n, k), k = 0..9) od;
    T := (n, k) -> A(n - k, k):
    seq(seq(T(n, k), k = 0..n), n = 0..10);
  • Mathematica
    A370890[n_, k_] := 2^n*Pochhammer[k/2, Floor[(n+1)/2]];
    Table[A370890[n-k, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Mar 06 2024 *)
  • SageMath
    # Note the use of different kinds of division.
    def A(n, k): return 2**n * rising_factorial(k/2, (n+1)//2)
    for n in range(0, 9): print([A(n, k) for k in range(0, 9)])
Showing 1-10 of 14 results. Next