Original entry on oeis.org
1, 2, 5, 16, 53, 206, 817, 3620, 16361, 80218, 401501, 2139512, 11641885, 66599846, 388962953, 2367284236, 14700573137, 94523836850, 619674301621, 4186249123808, 28809504493061, 203556335785342, 1463877667140065
Offset: 0
A377954
a(n) = n! * Sum_{k=0..n} binomial(k+2,n-k) / k!.
Original entry on oeis.org
1, 3, 9, 31, 117, 471, 2053, 9339, 45321, 227467, 1203681, 6556023, 37316029, 217944351, 1321360797, 8201728531, 52577120913, 344433580179, 2321103364921, 15960060854607, 112534486969221, 808555930139623, 5942117054417589, 44446333314841131
Offset: 0
A377964
Expansion of e.g.f. (1+x) * exp(x*(1+x)^3).
Original entry on oeis.org
1, 2, 9, 58, 389, 3186, 29437, 294554, 3233673, 38350594, 484794641, 6522118362, 92857444429, 1390937221298, 21858658599429, 359271578140666, 6156249977141777, 109722278546645634, 2029772196329985433, 38893956306343711994, 770622936760496106261, 15763542538016019828082
Offset: 0
-
a(n, s=1, t=3) = n!*sum(k=0, n, binomial(t*k+s, n-k)/k!);
A377955
a(n) = n! * Sum_{k=0..n} binomial(k+3,n-k) / k!.
Original entry on oeis.org
1, 4, 15, 58, 241, 1056, 4879, 23710, 120033, 635356, 3478351, 19796514, 115988305, 703052728, 4372581711, 28022140486, 183804777409, 1238244635700, 8520907808143, 60061024788106, 431735704061361, 3171780156493264, 23730347517489295, 181115025566445678
Offset: 0
A377963
Expansion of e.g.f. (1+x) * exp(x*(1+x)^2).
Original entry on oeis.org
1, 2, 7, 34, 173, 1066, 7147, 51962, 412729, 3478258, 31220111, 296409202, 2953487077, 30870965594, 336796018483, 3824230997386, 45114077004017, 551338045973602, 6968344940992279, 90931562913957698, 1222939213021853341, 16929504703420184842, 240909000856701880187
Offset: 0
-
a(n, s=1, t=2) = n!*sum(k=0, n, binomial(t*k+s, n-k)/k!);
A377956
a(n) = n! * Sum_{k=0..n} binomial(k+4,n-k) / k!.
Original entry on oeis.org
1, 5, 23, 103, 473, 2261, 11215, 57863, 309713, 1715653, 9831911, 58058375, 353546473, 2210900693, 14215319903, 93610866151, 632159025185, 4362925851653, 30809311250743, 221958273142823, 1632956199823481, 12238229941781845, 93509510960341103, 726913018468699463
Offset: 0
A377958
Expansion of e.g.f. exp(x - x^2)/(1 - x).
Original entry on oeis.org
1, 2, 3, 4, 17, 126, 787, 5048, 39489, 361882, 3641411, 39948492, 478777873, 6226077014, 87182747667, 1307703873856, 20922694556417, 355686434950578, 6402375749061379, 121645136562423572, 2432901971620591761, 51090940751194252462, 1124000727777806326163
Offset: 0
A380617
Triangle read by rows: T(n,k) is the number of achiral combinatorial maps with n edges and k vertices, 1 <= k <= n + 1.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 5, 8, 5, 2, 16, 28, 26, 12, 3, 53, 121, 128, 82, 28, 6, 206, 528, 686, 505, 239, 68, 10, 817, 2516, 3638, 3192, 1802, 686, 157, 20, 3620, 12302, 20250, 19976, 13268, 6078, 1876, 372, 35, 16361, 63643, 114669, 126876, 95422, 50954, 19346, 5100, 845, 70
Offset: 0
Triangle begins:
n\k | 1 2 3 4 5 6 7 8 9
----+-------------------------------------------------------
0 | 1;
1 | 1, 1;
2 | 2, 2, 1;
3 | 5, 8, 5, 2;
4 | 16, 28, 26, 12, 3;
5 | 53, 121, 128, 82, 28, 6;
6 | 206, 528, 686, 505, 239, 68, 10;
7 | 817, 2516, 3638, 3192, 1802, 686, 157, 20;
8 | 3620, 12302, 20250, 19976, 13268, 6078, 1876, 372, 35;
...
A054938
Number of chiral chord diagrams on n nodes.
Original entry on oeis.org
0, 0, 0, 1, 26, 348, 4466, 61726, 949795, 16331482, 312298796, 6587217199, 152030203190, 3811719561156, 103171205826822, 2998417379370294, 93127344062857976, 3078376281077418971, 107905190923235526392
Offset: 1
Showing 1-9 of 9 results.
Comments