cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A141310 The odd numbers interlaced with the constant-2 sequence.

Original entry on oeis.org

1, 2, 3, 2, 5, 2, 7, 2, 9, 2, 11, 2, 13, 2, 15, 2, 17, 2, 19, 2, 21, 2, 23, 2, 25, 2, 27, 2, 29, 2, 31, 2, 33, 2, 35, 2, 37, 2, 39, 2, 41, 2, 43, 2, 45, 2, 47, 2, 49, 2, 51, 2, 53, 2, 55, 2, 57, 2, 59, 2, 61, 2, 63, 2, 65, 2, 67, 2, 69, 2, 71, 2, 73, 2, 75, 2, 77, 2, 79, 2, 81, 2, 83, 2, 85, 2, 87, 2, 89, 2, 91, 2, 93, 2, 95, 2, 97
Offset: 0

Views

Author

Paul Curtz, Aug 02 2008

Keywords

Comments

Similarly, the principle of interlacing a sequence and its first differences leads from A000012 and its differences A000004 to A059841, or from A140811 and its first differences A017593 to a sequence -1, 6, 5, 18, ...
If n is even then a(n) = n + 1 ; otherwise a(n) = 2. - Wesley Ivan Hurt, Jun 05 2013
Denominators of floor((n+1)/2) / (n+1), n > 0. - Wesley Ivan Hurt, Jun 14 2013
a(n) is also the number of minimum total dominating sets in the (n+1)-gear graph for n>1. - Eric W. Weisstein, Apr 11 2018
a(n) is also the number of minimum total dominating sets in the (n+1)-sun graph for n>1. - Eric W. Weisstein, Sep 09 2021
Denominators of Cesàro means sequence of A114112, corresponding numerators are in A354008. - Bernard Schott, May 14 2022
Also, denominators of Cesàro means sequence of A237420, corresponding numerators are in A354280. - Bernard Schott, May 22 2022

Crossrefs

Programs

  • Maple
    a:= n-> n+1-(n-1)*(n mod 2): seq(a(n), n=0..96); # Wesley Ivan Hurt, Jun 05 2013
  • Mathematica
    Flatten[Table[{2 n - 1, 2}, {n, 40}]] (* Alonso del Arte, Jun 15 2013 *)
    Riffle[Range[1, 79, 2], 2] (* Alonso del Arte, Jun 14 2013 *)
    Table[((-1)^n (n - 1) + n + 3)/2, {n, 0, 20}] (* Eric W. Weisstein, Apr 11 2018 *)
    Table[Floor[(n + 1)/2]/(n + 1), {n, 0, 20}] // Denominator (* Eric W. Weisstein, Apr 11 2018 *)
    LinearRecurrence[{0, 2, 0, -1}, {2, 3, 2, 5}, {0, 20}] (* Eric W. Weisstein, Apr 11 2018 *)
    CoefficientList[Series[(1 + 2 x + x^2 - 2 x^3)/(-1 + x^2)^2, {x, 0, 20}], x] (* Eric W. Weisstein, Apr 11 2018 *)
  • PARI
    A141310(n) = if(n%2,2,1+n); \\ (for offset=0 version) - Antti Karttunen, Oct 02 2018
    
  • PARI
    A141310off1(n) = if(n%2,n,2); \\ (for offset=1 version) - Antti Karttunen, Oct 02 2018
    
  • Python
    def A141310(n): return 2 if n % 2 else n + 1 # Chai Wah Wu, May 24 2022

Formula

a(2n) = A005408(n). a(2n+1) = 2.
First differences: a(n+1) - a(n) = (-1)^(n+1)*A109613(n-1), n > 0.
b(2n) = -A008586(n), and b(2n+1) = A060747(n), where b(n) = a(n+1) - 2*a(n).
a(n) = 2*a(n-2) - a(n-4). - R. J. Mathar, Feb 23 2009
G.f.: (1+2*x+x^2-2*x^3)/((x-1)^2*(1+x)^2). - R. J. Mathar, Feb 23 2009
From Wesley Ivan Hurt, Jun 05 2013: (Start)
a(n) = n + 1 - (n - 1)*(n mod 2).
a(n) = (n + 1) * (n - floor((n+1)/2))! / floor((n+1)/2)!.
a(n) = A000142(n+1) / A211374(n+1). (End)

Extensions

Edited by R. J. Mathar, Feb 23 2009
Term a(45) corrected, and more terms added by Antti Karttunen, Oct 02 2018

A249163 Triangle read by rows: the positive terms of A163626.

Original entry on oeis.org

1, 1, 1, 2, 1, 12, 1, 50, 24, 1, 180, 360, 1, 602, 3360, 720, 1, 1932, 25200, 20160, 1, 6050, 166824, 332640, 40320, 1, 18660, 1020600, 4233600, 1814400, 1, 57002, 5921520, 46070640, 46569600, 3628800, 1, 173052, 33105600, 451725120, 898128000, 239500800
Offset: 0

Views

Author

Paul Curtz, Dec 15 2014

Keywords

Comments

We have two possibilities: with or without 0's.
Without 0's:
1,
1,
1, 2,
1, 12,
1, 50, 24,
1, 180, 360,
etc.
Sum of every row: A000670(n).
First two terms of successive columns: 1, 1, 2, 12, 24, 360, ... = A211374.
With 0's:
1, 0, 0, 0,
1, 0, 0, 0,
1, 2, 0, 0,
1, 12, 0, 0,
1, 50, 24, 0,
1, 180, 360, 0,
1, 602, 3360, 720,
etc.
The columns are essentially A000012, A028243, A028246, A228909, A228911, A228913, from Stirling numbers of the second kind S(n,3), S(n,5), S(n,7), S(n,9), S(n,11), ... .

Crossrefs

Cf. A163626, A000670, A211374; also A000012, A000392, A000481, A000771, A049447, A028243, A028246, A091137, A228909, A163626, A228911, A228913 and Worpitzky numbers for the second Bernoulli numbers A164555(n)/A027642(n).

Programs

  • Mathematica
    Derivative[0][y][x] = y[x]; Derivative[1][y][x] = y[x]*(1 - y[x]); Derivative[n_][y][x] := Derivative[n][y][x] = D[Derivative[n - 1][y][x], x]; row[n_] := CoefficientList[Derivative[n][y][x], y[x]] // Rest; Table[ Select[row[n], Positive] , {n, 0, 12}] // Flatten
    (* or, simply: *) Table[(-1)^k*k!*StirlingS2[n+1, k+1], {n, 0, 12}, {k, 0, n}] // Flatten // Select[#, Positive]& (* Jean-François Alcover, Dec 16 2014 *)

A226731 a(n) = (2n - 1)!/(2n).

Original entry on oeis.org

20, 630, 36288, 3326400, 444787200, 81729648000, 19760412672000, 6082255020441600, 2322315553259520000, 1077167364120207360000, 596585001666576384000000, 388888194657798291456000000
Offset: 3

Views

Author

Wesley Ivan Hurt, Jun 15 2013

Keywords

Comments

For n < 3, the formula does not produce an integer.
The ratio of the product of the partition parts of 2n into exactly two parts to the sum of the partition parts of 2n into exactly two parts. For example, a(3) = 20, and 2*3 = 6 has 3 partitions into exactly two parts: (5,1), (4,2), (3,3). Forming the ratio of product to sum (of parts), we have (5*1*4*2*3*3)/(5+1+4+2+3+3) = 360/18 = 20. - Wesley Ivan Hurt, Jun 24 2013

Examples

			a(3) = (2*3 - 1)!/(2*3) = 5!/6 = 120/6 = 20.
		

Crossrefs

Programs

Formula

a(n) = A009445(n-1)/A005843(n) = A002674(n)/A001105(n). - Wesley Ivan Hurt, Jun 24 2013
a(n) ~ sqrt(Pi)*2^(2*n-1)*n^(2*n-3/2)/exp(2*n). - Ilya Gutkovskiy, Nov 01 2016
From Amiram Eldar, Mar 10 2022: (Start)
Sum_{n>=3} 1/a(n) = e - 8/3.
Sum_{n>=3} (-1)^(n+1)/a(n) = cos(1) + sin(1) - 4/3. (End)

A248812 Repeated terms of (2n)! (A010050).

Original entry on oeis.org

1, 1, 2, 2, 24, 24, 720, 720, 40320, 40320, 3628800, 3628800, 479001600, 479001600, 87178291200, 87178291200, 20922789888000, 20922789888000, 6402373705728000, 6402373705728000, 2432902008176640000, 2432902008176640000, 1124000727777607680000
Offset: 0

Views

Author

Wesley Ivan Hurt, Oct 16 2014

Keywords

Comments

For n>1, a(n) is the product of the smallest parts in the partitions of 4*floor(n/2) = A168273(n) into two parts.

Crossrefs

Programs

  • Magma
    [Factorial(2*Floor(n/2)) : n in [0..20]];
  • Maple
    A248812:=n->(2*floor(n/2))!: seq(A248812(n), n=0..20);
  • Mathematica
    Table[(2*Floor[n/2])!, {n, 0, 20}]

Formula

a(n) = ( 2*floor(n/2) )! = A000142(A052928(n)).
a(2n) = a(2n+1) = A010050(n) = A211374(2n-1).
E.g.f.: log((1+x)/(1-x))/2+1/(1-x^2). - Robert Israel, Oct 19 2014
Showing 1-4 of 4 results.