cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A000321 H_n(-1/2), where H_n(x) is Hermite polynomial of degree n.

Original entry on oeis.org

1, -1, -1, 5, 1, -41, 31, 461, -895, -6481, 22591, 107029, -604031, -1964665, 17669471, 37341149, -567425279, -627491489, 19919950975, 2669742629, -759627879679, 652838174519, 31251532771999, -59976412450835, -1377594095061119, 4256461892701199, 64623242860354751
Offset: 0

Views

Author

Keywords

Comments

Binomial transform gives A067994. Inverse binomial transform gives A062267(n)*(-1)^n. - Vladimir Reshetnikov, Oct 11 2016
The congruence a(n+k) == (-1)^k*a(n) (mod k) holds for all n and k. It follows that for even k the sequence obtained by reducing a(n) modulo k is purely periodic with period a divisor of k, while for odd k the sequence obtained by reducing a(n) modulo k is purely periodic with period a divisor of 2*k. See A047974. - Peter Bala, Apr 10 2023

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 209.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(-x-x^2))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jun 09 2018
  • Mathematica
    Table[HermiteH[n, -1/2], {n, 0, 25}] (* Vladimir Joseph Stephan Orlovsky, Jun 15 2009 *)
    Table[(-2)^n HypergeometricU[-n/2, 1/2, 1/4], {n, 0, 25}] (* Benedict W. J. Irwin, Oct 17 2017 *)
  • PARI
    N=66;  x='x+O('x^N);
    egf=exp(-x-x^2);  Vec(serlaplace(egf))
    /* Joerg Arndt, Mar 07 2013 */
    
  • PARI
    vector(50, n, n--; sum(k=0, n/2, (-1)^(n-k)*k!*binomial(n, k)*binomial(n-k, k))) \\ Altug Alkan, Oct 22 2015
    
  • PARI
    a(n) = polhermite(n, -1/2); \\ Michel Marcus, Oct 12 2016
    
  • Python
    from sympy import hermite
    def a(n): return hermite(n, -1/2) # Indranil Ghosh, May 26 2017
    

Formula

E.g.f.: exp(-x-x^2).
a(n) = Sum_{k=0..floor(n/2)} (-1)^(n-k)*k!*C(n, k)*C(n-k, k).
a(n) = - a(n-1) - 2*(n-1)*a(n-2), a(0) = 1, a(1) = -1.
a(n) = Sum_{k=0..n} (-1)^(2*n-k)*C(k,n-k)*n!/k!. - Paul Barry, Oct 08 2007, corrected by Altug Alkan, Oct 22 2015
E.g.f.: 1 - x*(1 - E(0) )/(1+x) where E(k) = 1 - (1+x)/(k+1)/(1-x/(x+1/E(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 18 2013
E.g.f.: -x/Q(0) where Q(k) = 1 - (1+x)/(1 - x/(x - (k+1)/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Mar 06 2013
G.f.: 1/(x*Q(0)), where Q(k) = 1 + 1/x + 2*(k+1)/Q(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Dec 21 2013
a(n) = (-2)^n * U(-n/2, 1/2, 1/4), where U is the confluent hypergeometric function. - Benedict W. J. Irwin, Oct 17 2017
E.g.f.: Product_{k>=1} (1 + (-x)^k)^(mu(k)/k). - Ilya Gutkovskiy, May 26 2019

Extensions

Formulae and more terms from Vladeta Jovovic, Apr 30 2001

A052859 Expansion of e.g.f.: exp(exp(2*x) - 2*exp(x) + 1).

Original entry on oeis.org

1, 0, 2, 6, 26, 150, 962, 6846, 54266, 471750, 4439762, 44911086, 485570186, 5581383990, 67890295202, 870493380126, 11726471352986, 165475293394470, 2439632685738482, 37491028556508366, 599285435979866666, 9945441791592272790, 171062503783616702402
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Previous name was: A simple grammar.
a(n) is the number of ways to select a nonempty proper subset from each block of the set partitions of {1,2,...,n}. - Geoffrey Critzer, Jan 20 2012

Crossrefs

Programs

  • Maple
    spec := [S,{B=Prod(C,C),C=Set(Z,1 <= card),S=Set(B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)
          *2*binomial(n-1, j-1)*Stirling2(j, 2), j=1..n))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Sep 02 2019
  • Mathematica
    nn=20; a=Exp[x]-1; Range[0,nn]! CoefficientList[Series[Exp[a^2], {x,0,nn}], x]  (* Geoffrey Critzer, Jan 20 2012 *)
    Table[Sum[BellY[n, k, 2^Range[n] - 2], {k, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
    Table[Sum[(2*k)!*StirlingS2[n, 2*k]/k!, {k, 0, n/2}], {n, 0, 25}] (* Vaclav Kotesovec, Oct 04 2022 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (2*k)!*x^(2*k)/(k!*prod(j=1, 2*k, 1-j*x)))) \\ Seiichi Manyama, May 07 2022
    
  • PARI
    a(n) = sum(k=0, n\2, (2*k)!*stirling(n, 2*k, 2)/k!); \\ Seiichi Manyama, May 07 2022

Formula

E.g.f.: exp(exp(x)^2-2*exp(x)+1).
Stirling transform of unsigned Hermite numbers: Sum_{k=0..n} Stirling2(n, k)*|HermiteH(k, 0)|. - Vladeta Jovovic, Sep 12 2003
From Seiichi Manyama, May 07 2022: (Start)
G.f.: Sum_{k>=0} (2*k)! * x^(2*k)/(k! * Product_{j=1..2*k} (1 - j * x)).
a(n) = Sum_{k=0..floor(n/2)} (2*k)! * Stirling2(n,2*k)/k!. (End)
a(n) ~ 2^n * exp(1/2 - n - 2*sqrt(n/LambertW(n)) + n/LambertW(n)) * n^n / (sqrt(1 + LambertW(n)) * LambertW(n)^n). - Vaclav Kotesovec, Oct 04 2022

Extensions

New name using e.g.f. from Vaclav Kotesovec, Oct 04 2022

A067147 Triangle of coefficients for expressing x^n in terms of Hermite polynomials.

Original entry on oeis.org

1, 0, 1, 2, 0, 1, 0, 6, 0, 1, 12, 0, 12, 0, 1, 0, 60, 0, 20, 0, 1, 120, 0, 180, 0, 30, 0, 1, 0, 840, 0, 420, 0, 42, 0, 1, 1680, 0, 3360, 0, 840, 0, 56, 0, 1, 0, 15120, 0, 10080, 0, 1512, 0, 72, 0, 1, 30240, 0, 75600, 0, 25200, 0, 2520, 0, 90, 0, 1
Offset: 0

Views

Author

Christian G. Bower, Jan 03 2002

Keywords

Comments

x^n = (1/2^n) * Sum_{k=0..n} a(n,k)*H_k(x).
These polynomials, H_n(x), are an Appell sequence, whose umbral compositional inverse sequence HI_n(x) consists of the same polynomials signed with the e.g.f. e^{-t^2} e^{xt}. Consequently, under umbral composition H_n(HI.(x)) = x^n = HI_n(H.(x)). Other differently scaled families of Hermite polynomials are A066325, A099174, and A060821. See Griffin et al. for a relation to the Catalan numbers and matrix integration. - Tom Copeland, Dec 27 2020

Examples

			Triangle begins with:
    1;
    0,   1;
    2,   0,   1;
    0,   6,   0,   1;
   12,   0,  12,   0,   1;
    0,  60,   0,  20,   0,   1;
  120,   0, 180,   0,  30,   0,   1;
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 801. (Table 22.12)

Crossrefs

Row sums give A047974. Columns 0-2: A001813, A000407, A001814. Cf. A048854, A060821.

Programs

  • Magma
    [[Round(Factorial(n)*(1+(-1)^(n+k))/(2*Factorial(k)*Gamma((n-k+2)/2))): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Jun 09 2018
  • Maple
    T := proc(n, k) (n - k)/2; `if`(%::integer, (n!/k!)/%!, 0) end:
    for n from 0 to 11 do seq(T(n, k), k=0..n) od; # Peter Luschny, Jan 05 2021
  • Mathematica
    Table[n!*(1+(-1)^(n+k))/(2*k!*Gamma[(n-k+2)/2]), {n,0,20}, {k,0,n}]// Flatten (* G. C. Greubel, Jun 09 2018 *)
  • PARI
    T(n, k) = round(n!*(1+(-1)^(n+k))/(2*k! *gamma((n-k+2)/2)))
    for(n=0,20, for(k=0,n, print1(T(n, k), ", "))) \\ G. C. Greubel, Jun 09 2018
    
  • PARI
    {T(n,k) = if(k<0 || nMichael Somos, Jan 15 2020 */
    

Formula

E.g.f. (rel to x): A(x, y) = exp(x*y + x^2).
Sum_{ k>=0 } 2^k*k!*T(m, k)*T(n, k) = T(m+n, 0) = |A067994(m+n)|. - Philippe Deléham, Jul 02 2005
T(n, k) = 0 if n-k is odd; T(n, k) = n!/(k!*((n-k)/2)!) if n-k is even. - Philippe Deléham, Jul 02 2005
T(n, k) = n!/(k!*2^((n-k)/2)*((n-k)/2)!)*2^((n+k)/2)*(1+(-1)^(n+k))/2^(k+1).
T(n, k) = A001498((n+k)/2, (n-k)/2)2^((n+k)/2)(1+(-1)^(n+k))/2^(k+1). - Paul Barry, Aug 28 2005
Exponential Riordan array (e^(x^2),x). - Paul Barry, Sep 12 2006
G.f.: 1/(1-x*y-2*x^2/(1-x*y-4*x^2/(1-x*y-6*x^2/(1-x*y-8*x^2/(1-... (continued fraction). - Paul Barry, Apr 10 2009
The n-th row entries may be obtained from D^n(exp(x*t)) evaluated at x = 0, where D is the operator sqrt(1+4*x)*d/dx. - Peter Bala, Dec 07 2011
As noted in the comments this is an Appell sequence of polynomials, so the lowering and raising operators defined by L H_n(x) = n H_{n-1}(x) and R H_{n}(x) = H_{n+1}(x) are L = D_x, the derivative, and R = D_t log[e^{t^2} e^{xt}] |{t = D_x} = x + 2 D_x, and the polynomials may also be generated by e^{-D^2} x^n = H_n(x). - _Tom Copeland, Dec 27 2020

A086660 Stirling transform of Hermite numbers: Sum_{k=0..n} Stirling2(n,k) * HermiteH(k,0).

Original entry on oeis.org

1, 0, -2, -6, -2, 90, 598, 1554, -10082, -164310, -1101242, -1496286, 64767118, 965876730, 7104497398, 57428274, -856472198402, -14195316779190, -122409183339482, 25272908324034, 21770258523698158
Offset: 0

Views

Author

Vladeta Jovovic, Sep 12 2003

Keywords

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(-(Exp(x)-1)^2))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jul 12 2018
  • Mathematica
    Table[Sum[StirlingS2[n,k]HermiteH[k,0],{k,0,n}],{n,0,20}] (* Harvey P. Dale, Mar 24 2013 *)
    With[{nmax = 50}, CoefficientList[Series[Exp[-(Exp[x] - 1)^2], {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Jul 12 2018 *)
  • PARI
    x='x+O('x^50); Vec(serlaplace(exp(-(exp(x)-1)^2))) \\ G. C. Greubel, Jul 12 2018
    

Formula

E.g.f.: exp(-(exp(x)-1)^2).

A101109 Number of sets of lists (sequences) of n labeled elements with k=3 elements per list.

Original entry on oeis.org

1, 0, 0, 6, 0, 0, 360, 0, 0, 60480, 0, 0, 19958400, 0, 0, 10897286400, 0, 0, 8892185702400, 0, 0, 10137091700736000, 0, 0, 15388105201717248000, 0, 0, 30006805143348633600000, 0, 0, 73096577329197271449600000
Offset: 0

Views

Author

Thomas Wieder, Dec 01 2004

Keywords

Comments

The (labeled) case for k=2 is A067994, the Hermite numbers. The (labeled) case for k>=1 is A000262, Number of "sets of lists".

Examples

			Let Z[i] denote the i-th labeled element. Then a(3) = 6 with the following six sets:
Set(Sequence(Z[3],Z[1],Z[2])), Set(Sequence(Z[2],Z[1],Z[3])), Set(Sequence(Z[3],Z[2],Z[1])), Set(Sequence(Z[2],Z[3],Z[1])), Set(Sequence(Z[1],Z[3],Z[2])), Set(Sequence(Z[1],Z[2],Z[3])).
		

Crossrefs

Programs

  • Maple
    A101109 := n -> n!*PIECEWISE([1/GAMMA(1/3*n+1), irem(n,3) = 0],[0, irem(n-1,3) = 0],[0, irem(n-2,3) = 0]); [ seq(n!*PIECEWISE([1/GAMMA(1/3*n+1), irem(n,3) = 0],[0, irem(n-1,3) = 0],[0, irem(n-2,3) = 0]),n=0..30) ];
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*
           j!*binomial(n-1, j-1), j=`if`(n>2, 3, [][])))
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, May 10 2016
  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[x^3],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Oct 16 2013 *)
  • Sage
    def A101109(n) : return factorial(n)/factorial(n/3) if n%3 == 0 else 0
    [A101109(n) for n in (0..30)] # Peter Luschny, Jul 12 2012

Formula

E.g.f.: exp(z^3).
a(0) = 1, a(1) = 0, a(2) = 0, (-n-3)*a(n+3)+3*a(n).
a(n) = n!/(n/3)!, if 3 divides n, 0 otherwise. - Mitch Harris, Jan 19 2006

A277378 Expansion of e.g.f. exp(2*x/(1-x))/sqrt(1-x^2).

Original entry on oeis.org

1, 2, 9, 50, 361, 3042, 29929, 331298, 4100625, 55777922, 828691369, 13316140818, 230256982201, 4257449540450, 83834039024649, 1750225301567618, 38614608429012001, 897325298084953602, 21904718673762721225, 560258287738117292018, 14981472258320814527241
Offset: 0

Views

Author

Vladimir Reshetnikov, Oct 11 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Abs[HermiteH[n, I]]^2/2^n, {n, 0, 20}]
    With[{nn=20},CoefficientList[Series[Exp[2x/(1-x)]/Sqrt[1-x^2],{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Jan 27 2023 *)

Formula

E.g.f.: exp(2*x/(1-x))/sqrt(1-x^2).
a(n) = |H_n(i)|^2 / 2^n = H_n(i) * H_n(-i) / 2^n, where H_n(x) is n-th Hermite polynomial, i = sqrt(-1).
D-finite with recurrence: (n+2)*(a(n) + n*a(n-1)) = a(n+1) + n*(n-1)^2*a(n-2).
a(n) ~ n^n / (2 * exp(1 - 2*sqrt(2*n) + n)) * (1 + 2*sqrt(2)/(3*sqrt(n))). - Vaclav Kotesovec, Oct 27 2021

A308346 Expansion of e.g.f. 1/(1 - x)^log(1 - x).

Original entry on oeis.org

1, 0, -2, -6, -10, 20, 352, 2772, 18132, 104400, 469608, 238920, -35811048, -730972944, -11436661728, -164609993520, -2294024595312, -31488879303552, -426338226719904, -5626751283423072, -70000948158061728, -745703905072996800, -4142683990211677440, 110386551348875714880
Offset: 0

Views

Author

Ilya Gutkovskiy, May 21 2019

Keywords

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( (1-x)^Log(1/(1-x)) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 21 2019
    
  • Maple
    E:= 1/(1-x)^log(1-x):
    S:= series(E,x,31):
    seq(coeff(S,x,j)*j!,j=0..30); # Robert Israel, May 22 2019
  • Mathematica
    nmax = 23; CoefficientList[Series[1/(1 - x)^Log[1 - x], {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[Abs[StirlingS1[n, k]] HermiteH[k, 0], {k, 0, n}], {n, 0, 23}]
    a[n_] := a[n] = -2 Sum[(k - 1)! HarmonicNumber[k - 1] Binomial[n - 1, k - 1] a[n - k], {k, 2, n}]; a[0] = 1; Table[a[n], {n, 0, 23}]
  • PARI
    a(n) = sum(k=0, n, abs(stirling(n, k, 1))*polhermite(k, 0)); \\ Michel Marcus, May 21 2019
    
  • Sage
    m = 30; T = taylor((1-x)^log(1/(1-x)), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 21 2019

Formula

a(n) = Sum_{k=0..n} |Stirling1(n,k)|*A067994(k).

A349280 Irregular triangle read by rows: T(n,k) is the number of arrangements of n labeled children with exactly k rounds; n >= 2, 1 <= k <= floor(n/2).

Original entry on oeis.org

2, 3, 8, 12, 30, 60, 144, 330, 120, 840, 2100, 1260, 5760, 15344, 11760, 1680, 45360, 127008, 113400, 30240, 403200, 1176120, 1169280, 428400, 30240, 3991680, 12054240, 13000680, 5821200, 831600, 43545600, 135508032, 155923680, 80415720, 16632000, 665280
Offset: 2

Views

Author

Steven Finch, Nov 13 2021

Keywords

Comments

A round means the same as a directed ring or circle.

Examples

			Triangle starts:
[2]     2;
[3]     3;
[4]     8,     12;
[5]    30,     60;
[6]   144,    330,    120;
[7]   840,   2100,   1260;
[8]  5760,  15344,  11760,  1680;
[9] 45360, 127008, 113400, 30240;
...
For n = 4, there are 8 ways to make one round and 12 ways to make two rounds.
		

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999 (Sec. 5.2)

Crossrefs

Row sums give A066166 (Stanley's children's game).
Column 1 gives A001048.
Right border element of row n is A001813(n/2) = |A067994(n)| for even n.

Programs

  • Maple
    ser := series((1 - x)^(-x*t), x, 20): xcoeff := n -> coeff(ser, x, n):
    T := (n, k) -> n!*coeff(xcoeff(n), t, k):
    seq(seq(T(n, k), k = 1..iquo(n,2)), n = 2..12); # Peter Luschny, Nov 13 2021
    # second Maple program:
    A349280 := (n,k) -> binomial(n,k)*k!*abs(Stirling1(n-k,k)):
    seq(print(seq(A349280(n,k), k=1..iquo(n,2))), n=2..12); # Mélika Tebni, May 03 2023
  • Mathematica
    f[k_, n_] := n! SeriesCoefficient[(1 - x)^(-x t), {x, 0, n}, {t, 0, k}]
    Table[f[k, n], {n, 2, 12}, {k, 1, Floor[n/2]}]

Formula

G.f.: (1 - x)^(-x*t).
T(n, k) = binomial(n, k)*k!*|Stirling1(n-k, k)|. - Mélika Tebni, May 03 2023
The above formula can also be written as T(n, k) = A008279(n, k)*A331327(n, k) or as T(n, k) = A265609(n + 1, k)*A331327(n, k). - Peter Luschny, May 03 2023

A277379 E.g.f.: exp(x/(1-x^2))/sqrt(1-x^2).

Original entry on oeis.org

1, 1, 2, 10, 40, 296, 1936, 17872, 164480, 1820800, 21442816, 279255296, 3967316992, 59837670400, 988024924160, 17009993230336, 318566665977856, 6177885274406912, 129053377688043520, 2786107670662021120, 64136976817284448256, 1525720008470138454016
Offset: 0

Views

Author

Vladimir Reshetnikov, Oct 11 2016

Keywords

Comments

Is this the same as A227545 (at least for n>=1)?

Crossrefs

Programs

  • Mathematica
    Table[Abs[HermiteH[n, (1 + I)/2]]^2/2^n, {n, 0, 20}]

Formula

a(n) = |H_n((1+i)/2)|^2 / 2^n = H_n((1+i)/2) * H_n((1-i)/2) / 2^n, where H_n(x) is n-th Hermite polynomial, i = sqrt(-1).
D-finite with recurrence: (n+1)*(n+2)*(a(n) - n^2*a(n-1)) + (2*n^2+7*n+6)*a(n+1) + a(n+2) = a(n+3).
a(n) ~ n^n * exp(sqrt(2*n)-n) / 2. - Vaclav Kotesovec, Oct 14 2016

A382139 Number of matchings of [2n] with no coupled arcs.

Original entry on oeis.org

1, 1, 1, 9, 81, 705, 7665, 100905, 1524705, 26022465, 496042785, 10445342985, 240779831985, 6030718158465, 163087008669585, 4735950860666025, 146987669673669825, 4855606200012593025, 170101350767940617025, 6298861062893921346825, 245834199405298416337425
Offset: 0

Views

Author

R. J. Mathar, Mar 17 2025

Keywords

Crossrefs

Programs

  • Maple
    g:= exp(-x^2)/sqrt(1-2*x) ;
    seq( coeftayl(g,x=0,n)*n!,n=0..10) ;

Formula

E.g.f: exp(-x^2)/sqrt(1-2*x).
Exponential convolution of A067994 and A001147.
D-finite with recurrence a(n) +(-2*n+1)*a(n-1) +2*(n-1)*a(n-2) -4*(n-1)*(n-2)*a(n-3)=0.
Showing 1-10 of 10 results.