A081139 9th binomial transform of (0,0,1,0,0,0,...).
0, 0, 1, 27, 486, 7290, 98415, 1240029, 14880348, 172186884, 1937102445, 21308126895, 230127770466, 2447722649502, 25701087819771, 266895911974545, 2745215094595320, 28001193964872264, 283512088894331673
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- Index entries for linear recurrences with constant coefficients, signature (27,-243,729).
Crossrefs
Programs
-
Magma
[9^n* Binomial(n+2, 2): n in [-2..20]]; // Vincenzo Librandi, Oct 16 2011
-
Mathematica
LinearRecurrence[{27,-243,729},{0,0,1},30] (* Harvey P. Dale, Jan 30 2018 *)
Formula
a(n) = 27*a(n-1) - 243*a(n-2) + 729*a(n-3), a(0)=a(1)=0, a(2)=1.
a(n) = 9^(n-2)*binomial(n, 2).
G.f.: x^2/(1-9*x)^3.
E.g.f.: (x^2/2)*exp(9*x). - G. C. Greubel, May 13 2021
From Amiram Eldar, Jan 06 2022: (Start)
Sum_{n>=2} 1/a(n) = 18 - 144*log(9/8).
Sum_{n>=2} (-1)^n/a(n) = 180*log(10/9) - 18. (End)
Comments