A081172 Tribonacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3), with a(0) = 1, a(1) = 1, a(2) = 0.
1, 1, 0, 2, 3, 5, 10, 18, 33, 61, 112, 206, 379, 697, 1282, 2358, 4337, 7977, 14672, 26986, 49635, 91293, 167914, 308842, 568049, 1044805, 1921696, 3534550, 6501051, 11957297, 21992898, 40451246, 74401441, 136845585, 251698272, 462945298, 851489155
Offset: 0
Links
- Harry J. Smith, Table of n, a(n) for n = 0..500
- Martin Burtscher, Igor Szczyrba, RafaĆ Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
- N. G. Voll, Some identities for four term recurrence relations, Fib. Quart., 51 (2013), 268-273.
- Index entries for linear recurrences with constant coefficients, signature (1,1,1).
Programs
-
GAP
a:=[1,1,0];; for n in [4..40] do a[n]:=a[n-1]+a[n-2]+a[n-3]; od; a; # G. C. Greubel, Apr 23 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-2*x^2)/(1-x-x^2-x^3) )); // G. C. Greubel, Apr 23 2019 -
Maple
A081172 := proc(n) option remember; if n <= 2 then op(n+1,[1,1,0]) ; else add(procname(n-i),i=1..3) ; end if; end proc: # R. J. Mathar, Aug 09 2012
-
Mathematica
LinearRecurrence[{1,1,1}, {1,1,0}, 40] (* Vladimir Joseph Stephan Orlovsky, Jun 07 2011 *)
-
PARI
{ a1=1; a2=1; a3=0; write("b081172.txt",0," ",a1); write("b081172.txt",1," ",a2); write("b081172.txt",2," ",a3); for(n=3,500, a=a1+a2+a3; a1=a2; a2=a3; a3=a; write("b081172.txt",n," ",a) ) } \\ Harry J. Smith, Mar 20 2009
-
PARI
my(x='x+O('x^40)); Vec((1-2*x^2)/(1-x-x^2-x^3)) \\ G. C. Greubel, Apr 23 2019
-
Sage
((1-2*x^2)/(1-x-x^2-x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 23 2019
Formula
From R. J. Mathar, Mar 27 2009: (Start)
G.f.: (1-2*x^2)/(1 - x - x^2 - x^3).
Comments