A081178 a(0) = 1; for n>=1, a(n) = Sum_{k=0..n} 7^k*N(n,k), where N(n,k)=(1/n)*C(n,k)*C(n,k+1) are the Narayana numbers (A001263).
1, 1, 8, 71, 680, 6882, 72528, 788019, 8766248, 99362894, 1143498224, 13326176998, 156950554384, 1865210341828, 22338852956064, 269355965364459, 3267146912972328, 39837475762660374, 488032452193307568
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
Programs
-
Magma
B:=Binomial; A081178:= func< n | n eq 0 select 1 else (&+[7^k*B(n,k)*B(n,k+1): k in [0..n]])/n >; [A081178(n): n in [0..40]]; // G. C. Greubel, Jan 15 2024
-
Maple
A081178_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1; for w from 1 to n do a[w] := a[w-1]+7*add(a[j]*a[w-j-1],j=1..w-1) od; convert(a, list) end: A081178_list(18); # Peter Luschny, May 19 2011
-
Mathematica
Table[SeriesCoefficient[(1+6*x-Sqrt[36*x^2-16*x+1])/(14*x),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 13 2012 *) a[n_] := Hypergeometric2F1[1 - n, -n, 2, 7]; Table[a[n], {n, 0, 18}] (* Peter Luschny, Mar 19 2018 *)
-
PARI
a(n)=if(n<1,1,sum(k=0,n,7^k/n*binomial(n,k)*binomial(n,k+1)))
-
SageMath
def A081178(n): b=binomial; if n==0: return 1 else: return (1/n)*sum(7^k*b(n,k)*b(n,k+1) for k in range(n+1)) [A081178(n) for n in range(41)] # G. C. Greubel, Jan 15 2024
Formula
G.f.: (1+6*x-sqrt(36*x^2-16*x+1))/(14*x).
a(n) = (8*(2*n-1)*a(n-1) - 36*(n-2)*a(n-2))/(n+1) for n>=2, a(0) = a(1) = 1. - Philippe Deléham, Aug 19 2005
a(n) ~ sqrt(14+8*sqrt(7))*(8+2*sqrt(7))^n/(14*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 13 2012
a(n) = hypergeom([1 - n, -n], [2], 7). - Peter Luschny, Mar 19 2018
Comments