cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081186 4th binomial transform of (1,0,1,0,1,...), A059841.

Original entry on oeis.org

1, 4, 17, 76, 353, 1684, 8177, 40156, 198593, 986404, 4912337, 24502636, 122336033, 611148724, 3054149297, 15265963516, 76315468673, 381534296644, 1907542343057, 9537324294796, 47685459212513, 238423809278164, 1192108586037617, 5960511549128476
Offset: 0

Views

Author

Paul Barry, Mar 11 2003

Keywords

Comments

Binomial transform of A007582.
a(n) is a companion to A005059(n): a(n) + A005059(n) = 5^n; e.g. a(4) = A005059(4) = 353 + 272 = 625 = 5^4. - Gary W. Adamson, Jun 30 2006
Number of words of length n from an alphabet of 5 letters in which a chosen letter appears an even number of times. - James Mahoney, Feb 03 2012 [See a comment in A007582, also for crossrefs. for the 1- to 11-letter word cases. - Wolfdieter Lang, Jul 17 2017]
The sequence of fractions x(n) = a(n+1)/a(n) satisfies a simple recurrence x(n+1) = 108 - (815 - 1500 / x(n-1)) / x(n) known as Muller's recurrence. It is used for the demonstration of an unexpected failure of floating-point computations. - Andrey Zabolotskiy, Sep 17 2019

Examples

			Say the alphabet is {a,b,c,d,e} and we want to know how many words of length one and two contain c an even number of times. a(1) = 4, which we can see by the four words {(a),(b),(d),(e)} and a(2) = 17, which we can see by the seventeen words {(a,a), (a,b), (a,d), (a,e), (b,a), (b,b), (b,d), (b,e), (c,c), (d,a), (d,b), (d,d), (d,e), (e,a), (e,b), (e,d), (e,e)}. - _James Mahoney_, Feb 03 2012
		

Crossrefs

Programs

  • GAP
    List([0..25], n-> (3^n + 5^n)/2); # G. C. Greubel, Dec 26 2019
  • Magma
    [3^n/2+5^n/2: n in [0..25]]; // Vincenzo Librandi, Aug 07 2013
    
  • Maple
    seq( (3^n + 5^n)/2, n=0..30); # G. C. Greubel, Dec 26 2019
  • Mathematica
    CoefficientList[Series[(1-4x)/((1-3x)(1-5x)), {x,0,25}], x] (* Vincenzo Librandi, Aug 07 2013 *)
    LinearRecurrence[{8,-15},{1,4},30] (* Harvey P. Dale, Apr 13 2019 *)
  • PARI
    vector(31, n,(3^(n-1) + 5^(n-1))/2 ) \\ G. C. Greubel, Dec 26 2019
    
  • Sage
    [(3^n + 5^n)/2 for n in (0..25)] # G. C. Greubel, Dec 26 2019
    

Formula

a(n) = 8*a(n-1) - 15*a(n-2) with n>1, a(0)=1, a(1)=4.
G.f.: (1-4*x)/((1-3*x)*(1-5*x)).
a(n) = (3^n + 5^n)/2.
a(n) = Sum_{k=0..floor(n/2)} C(n, 2*k)*4^(n-2*k).
E.g.f.: exp(4*x) * cosh(x). - Paul Barry, Oct 06 2004