A081199 5th binomial transform of (0,1,0,1,...), A000035.
0, 1, 10, 76, 520, 3376, 21280, 131776, 807040, 4907776, 29708800, 179301376, 1080002560, 6496792576, 39047864320, 234555621376, 1408407470080, 8454739787776, 50745618595840, 304542431051776, 1827529464217600, 10966276296933376, 65802055828111360, 394829927154712576
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (10,-24).
Crossrefs
Programs
-
Magma
[6^n/2-4^n/2: n in [0..25]]; // Vincenzo Librandi, Aug 07 2013
-
Maple
seq(add(2^(2*n-k)*binomial(n,k)/2,k=1..n),n=0..20); # Zerinvary Lajos, Apr 18 2009
-
Mathematica
CoefficientList[Series[x / ((1 - 4 x) (1 - 6 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 07 2013 *) LinearRecurrence[{10, -24}, {0, 1}, 21] (* Michael De Vlieger, Jul 16 2017 *)
Formula
a(n) = 10*a(n-1) - 24*a(n-2) with n>1, a(0)=0, a(1)=1.
G.f.: x/((1-4*x)*(1-6*x)).
a(n) = 6^n/2 - 4^n/2.
E.g.f.: exp(4*x)*(exp(2*x) - 1)/2. - Stefano Spezia, Jul 23 2024
Comments