A081221 Number of consecutive numbers >= n having at least one square divisor > 1.
0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 1, 0, 2, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 3, 2, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 2, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 2, 1, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 3, 2, 1, 0, 0, 0, 1, 0
Offset: 1
Keywords
Examples
For n = 3, 3 is a squarefree number, thus a(3) = 0. For n = 48, neither 48 = 2^4 * 3 nor 49 = 7^2, nor 50 = 2^2 * 5 are squarefree, but 51 = 3*17 is, thus a(48) = 3. - _Antti Karttunen_, Sep 22 2017
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
Mathematica
Flatten@ Map[If[First@ # == 0, #, Reverse@ Range@ Length@ #] &, SplitBy[Table[DivisorSum[n, 1 &, And[# > 1, IntegerQ@ Sqrt@ #] &], {n, 120}], # > 0 &]] (* Michael De Vlieger, Sep 22 2017 *)
-
PARI
A081221(n) = { my(k=0); while(!issquarefree(n+k),k++); k; }; \\ Antti Karttunen, Sep 22 2017
-
Python
from itertools import count from sympy import factorint def A081221(n): return next(m for m in count(0) if max(factorint(n+m).values(),default=0)<=1) # Chai Wah Wu, Dec 04 2024
Formula
mu(k) = 0 for n <= k < n+a(n) and mu(n+a(n)) <> 0, where mu = A008683 (Moebius function).
a(n)*mu(n) = 0.
a(A068781(n)) > 0.
a(n) = A067535(n) - n. - Amiram Eldar, Oct 10 2023
Comments