cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A068781 Lesser of two consecutive numbers each divisible by a square.

Original entry on oeis.org

8, 24, 27, 44, 48, 49, 63, 75, 80, 98, 99, 116, 120, 124, 125, 135, 147, 152, 168, 171, 175, 188, 207, 224, 242, 243, 244, 260, 275, 279, 288, 296, 315, 324, 332, 342, 343, 350, 351, 360, 363, 368, 375, 387, 404, 423, 424, 440, 459, 475, 476, 495, 507, 512
Offset: 1

Views

Author

Robert G. Wilson v, Mar 04 2002

Keywords

Comments

Also numbers m such that mu(m)=mu(m+1)=0, where mu is the Moebius-function (A008683); A081221(a(n))>1. - Reinhard Zumkeller, Mar 10 2003
The sequence contains an infinite family of arithmetic progressions like {36a+8}={8,44,80,116,152,188,...} ={4(9a+2)}. {36a+9} provides 2nd nonsquarefree terms. Such AP's can be constructed to any term by solution of a system of linear Diophantine equation. - Labos Elemer, Nov 25 2002
1. 4k^2 + 4k is a member for all k; i.e., 8 times a triangular number is a member. 2. (4k+1) times an odd square - 1 is a member. 3. (4k+3) times odd square is a member. - Amarnath Murthy, Apr 24 2003
The asymptotic density of this sequence is 1 - 2/zeta(2) + Product_{p prime} (1 - 2/p^2) = 1 - 2 * A059956 + A065474 = 0.1067798952... (Matomäki et al., 2016). - Amiram Eldar, Feb 14 2021
Maximum of the n-th maximal anti-run of nonsquarefree numbers (A013929) differing by more than one. For runs instead of anti-runs we have A376164. For squarefree instead of nonsquarefree we have A007674. - Gus Wiseman, Sep 14 2024

Examples

			44 is in the sequence because 44 = 2^2 * 11 and 45 = 3^2 * 5.
From _Gus Wiseman_, Sep 14 2024: (Start)
Splitting nonsquarefree numbers into maximal anti-runs gives:
  (4,8)
  (9,12,16,18,20,24)
  (25,27)
  (28,32,36,40,44)
  (45,48)
  (49)
  (50,52,54,56,60,63)
  (64,68,72,75)
  (76,80)
  (81,84,88,90,92,96,98)
  (99)
The maxima are a(n). The corresponding pairs are (8,9), (24,25), (27,28), (44,45), etc.
(End)
		

Crossrefs

Subsequence of A261869.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.
A053797 gives lengths of runs of nonsquarefree numbers, firsts A373199.

Programs

  • Haskell
    a068781 n = a068781_list !! (n-1)
    a068781_list = filter ((== 0) . a261869) [1..]
    -- Reinhard Zumkeller, Sep 04 2015
    
  • Mathematica
    Select[ Range[2, 600], Max[ Transpose[ FactorInteger[ # ]] [[2]]] > 1 && Max[ Transpose[ FactorInteger[ # + 1]] [[2]]] > 1 &]
    f@n_:= Flatten@Position[Partition[SquareFreeQ/@Range@2000,n,1], Table[False,{n}]]; f@2 (* Hans Rudolf Widmer, Aug 30 2022 *)
    Max/@Split[Select[Range[100], !SquareFreeQ[#]&],#1+1!=#2&]//Most (* Gus Wiseman, Sep 14 2024 *)
  • PARI
    isok(m) = !moebius(m) && !moebius(m+1); \\ Michel Marcus, Feb 14 2021

Formula

A261869(a(n)) = 0. - Reinhard Zumkeller, Sep 04 2015

A067535 Smallest squarefree number >= n.

Original entry on oeis.org

1, 2, 3, 5, 5, 6, 7, 10, 10, 10, 11, 13, 13, 14, 15, 17, 17, 19, 19, 21, 21, 22, 23, 26, 26, 26, 29, 29, 29, 30, 31, 33, 33, 34, 35, 37, 37, 38, 39, 41, 41, 42, 43, 46, 46, 46, 47, 51, 51, 51, 51, 53, 53, 55, 55, 57, 57, 58, 59, 61, 61, 62
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 27 2002

Keywords

Crossrefs

Programs

  • Maple
    A067535 := proc(n)
        for a from n do
            if issqrfree(a) then
                return a ;
            end if;
        end do:
    end proc:
    seq(A067535(n),n=1..100) ; # R. J. Mathar, May 31 2024
  • Mathematica
    Table[k = n; While[! SquareFreeQ@ k, k++]; k, {n, 62}] (* Michael De Vlieger, Mar 18 2017 *)
  • PARI
    a(n) = while (! issquarefree(n), n++); n; \\ Michel Marcus, Mar 18 2017
    
  • Python
    from itertools import count
    from sympy import factorint
    def A067535(n): return next(m for m in count(n) if max(factorint(m).values(),default=0)<=1) # Chai Wah Wu, Dec 04 2024

Formula

a(n) = n + A081221(n). - Amiram Eldar, Oct 10 2023

A378371 Distance between n and the least non prime power >= n, allowing 1.

Original entry on oeis.org

0, 4, 3, 2, 1, 0, 3, 2, 1, 0, 1, 0, 1, 0, 0, 2, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Nov 28 2024

Keywords

Comments

Non prime powers allowing 1 (A361102) are numbers that are not a prime power (A246655), namely 1, 6, 10, 12, 14, 15, 18, 20, 21, 22, 24, ...

Examples

			The least non prime power >= 4 is 6, so a(4) = 2.
		

Crossrefs

Sequences obtained by adding n to each term are placed in parentheses below.
For prime we have A007920 (A151800), strict A013632.
For composite we have A010051 (A113646 except initial terms).
For perfect power we have A074984 (A377468)
For squarefree we have A081221 (A067535).
For nonsquarefree we have (A120327).
For non perfect power we have A378357 (A378358).
The opposite version is A378366 (A378367).
For prime power we have A378370, strict A377282 (A000015).
This sequence is A378371 (A378372).
A000040 lists the primes, differences A001223.
A000961 and A246655 list the prime powers, differences A057820.
A024619 and A361102 list the non prime powers, differences A375708 and A375735.
Prime powers between primes: A053607, A080101, A304521, A366833, A377057.

Programs

  • Mathematica
    Table[NestWhile[#+1&,n,PrimePowerQ[#]&]-n,{n,100}]

Formula

a(n) = A378372(n) - n.

A378372 Least non prime power >= n, allowing 1.

Original entry on oeis.org

1, 6, 6, 6, 6, 6, 10, 10, 10, 10, 12, 12, 14, 14, 15, 18, 18, 18, 20, 20, 21, 22, 24, 24, 26, 26, 28, 28, 30, 30, 33, 33, 33, 34, 35, 36, 38, 38, 39, 40, 42, 42, 44, 44, 45, 46, 48, 48, 50, 50, 51, 52, 54, 54, 55, 56, 57, 58, 60, 60, 62, 62, 63, 65, 65, 66, 68
Offset: 1

Views

Author

Gus Wiseman, Nov 29 2024

Keywords

Comments

Non prime powers allowing 1 (A361102) are numbers that are not a prime power (A246655), namely 1, 6, 10, 12, 14, 15, 18, 20, 21, 22, 24, ...

Examples

			The least non prime power >= 4 is 6, so a(4) = 6.
		

Crossrefs

Sequences obtained by subtracting n from each term are placed in parentheses below.
For prime power we have A000015 (A378370).
For squarefree we have A067535 (A081221).
For composite we have A113646 (A010051).
For nonsquarefree we have A120327.
For prime we have A151800 (A007920), strict (A013632).
Run-lengths are 1 and A375708.
For perfect power we have A377468 (A074984).
For non-perfect power we have A378358 (A378357).
The opposite is A378367, distance A378366.
This sequence is A378372 (A378371).
A000040 lists the primes, differences A001223.
A000961 and A246655 list the prime powers, differences A057820.
A024619 and A361102 list the non prime powers, differences A375708 and A375735.
Prime powers between primes: A053607, A080101, A304521, A366833, A377057.

Programs

  • Mathematica
    Table[NestWhile[#+1&,n,PrimePowerQ[#]&],{n,100}]

Formula

a(n) = A378371(n) + n.

A074984 m^p-n, for smallest m^p>=n.

Original entry on oeis.org

0, 2, 1, 0, 3, 2, 1, 0, 0, 6, 5, 4, 3, 2, 1, 0, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 0, 4, 3, 2, 1, 0, 3, 2, 1, 0, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8
Offset: 1

Views

Author

Zak Seidov, Oct 07 2002

Keywords

Comments

a(n) = 0 if n = m^p that is if n is a full power (square, cube etc.).
This is the distance between n and the next perfect power. The previous perfect power is A081676, which differs from n by A069584. After a(8) = a(9) this sequence is an anti-run (no adjacent equal terms). - Gus Wiseman, Dec 02 2024

Crossrefs

Sequences obtained by subtracting n from each term are placed in parentheses below.
Positions of 0 are A001597.
Positions of 1 are A375704.
The version for primes is A007920 (A007918).
The opposite (greatest perfect power <= n) is A069584 (A081676).
The version for perfect powers is A074984 (this) (A377468).
The version for squarefree numbers is A081221 (A067535).
The version for non perfect powers is A378357 (A378358).
The version for nonsquarefree numbers is A378369 (A120327).
The version for prime powers is A378370 (A000015).
The version for non prime powers is A378371 (A378372).
A001597 lists the perfect powers, differences A053289.
A007916 lists the non perfect powers, differences A375706.
A069623 counts perfect powers <= n.
A076411 counts perfect powers < n.
A131605 lists perfect powers that are not prime powers.
A377432 counts perfect powers between primes, zeros A377436.

Programs

  • Mathematica
    powerQ[n_] := GCD @@ FactorInteger[n][[All, 2]] > 1; powerQ[1] = True; a[n_] := For[k = n, True, k++, If[powerQ[k], Return[k-n]]]; Table[a[n], {n, 1, 92}] (* Jean-François Alcover, Apr 19 2013 *)
  • PARI
    a(n) = { if (n==1, return (0)); my(nn = n); while(! ispower(nn), nn++); return (nn - n);} \\ Michel Marcus, Apr 19 2013

Formula

a(n) = A377468(n) - n. - Gus Wiseman, Dec 02 2024

A378357 Distance from n to the least non perfect power >= n.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Nov 24 2024

Keywords

Comments

Perfect powers (A001597) are 1 and numbers with a proper integer root, complement A007916.
All terms are <= 2 because the only adjacent perfect powers are 8 and 9.

Crossrefs

The version for prime numbers is A007920, subtraction of A159477 or A007918.
The version for perfect powers is A074984, subtraction of A377468.
The version for squarefree numbers is A081221, subtraction of A067535.
Subtracting from n gives A378358, opposite A378363.
The opposite version is A378364.
The version for nonsquarefree numbers is A378369, subtraction of A120327.
The version for prime powers is A378370, subtraction of A000015.
The version for non prime powers is A378371, subtraction of A378372.
The version for composite numbers is A378456, subtraction of A113646.
A000961 lists the powers of primes, differences A057820.
A001597 lists the perfect powers, differences A053289, seconds A376559.
A007916 lists the non perfect powers, differences A375706, seconds A376562.
A069623 counts perfect powers <= n.
A076411 counts perfect powers < n.
A377432 counts perfect powers between primes, zeros A377436.

Programs

  • Mathematica
    perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
    Table[NestWhile[#+1&,n,#>1&&perpowQ[#]&]-n,{n,100}]
  • Python
    from sympy import perfect_power
    def A378357(n): return 0 if n>1 and perfect_power(n)==False else 1 if perfect_power(n+1)==False else 2 # Chai Wah Wu, Nov 27 2024

Formula

a(n) = n - A378358(n).

A378370 Distance between n and the least prime power >= n, allowing 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 2, 1, 0, 0, 1, 0, 3, 2, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 4, 3, 2, 1, 0, 3, 2, 1, 0, 1, 0, 3, 2, 1, 0, 1, 0, 3, 2, 1, 0, 5, 4, 3, 2, 1, 0, 1, 0, 2, 1, 0, 2, 1, 0, 3, 2, 1, 0, 1, 0, 5, 4, 3, 2, 1, 0, 1, 0, 1, 0, 5, 4, 3, 2
Offset: 1

Views

Author

Gus Wiseman, Nov 27 2024

Keywords

Comments

Prime powers allowing 1 are listed by A000961.

Crossrefs

Sequences obtained by adding n to each term are placed in parentheses below.
For prime instead of prime power we have A007920 (A007918), strict A013632.
For perfect power we have A074984 (A377468), opposite A069584 (A081676).
For squarefree we have A081221 (A067535).
The restriction to the prime numbers is A377281 (A345531).
The strict version is A377282 = a(n) + 1.
For non prime power instead of prime power we have A378371 (A378372).
The opposite version is A378457, strict A276781.
A000015 gives the least prime power >= n, opposite A031218.
A000040 lists the primes, differences A001223.
A000961 and A246655 list the prime powers, differences A057820.
A024619 and A361102 list the non prime powers, differences A375708 and A375735.
A151800 gives the least prime > n.
Prime-powers between primes: A053607, A080101, A304521, A366833, A377057.

Programs

  • Mathematica
    Table[NestWhile[#+1&,n,#>1&&!PrimePowerQ[#]&]-n,{n,100}]

Formula

a(n) = A000015(n) - n.
a(n) = A377282(n - 1) - 1 for n > 1.

A080733 Smallest distance from n to a squarefree number.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 2, 1, 0, 0, 0, 1, 0
Offset: 1

Views

Author

Benoit Cloitre, Mar 08 2003

Keywords

Comments

a(n) = min (abs(n-k) : where k runs through the squarefree numbers ).
The sequence is unbounded.
The first 0 occurs at 1, the first 1 at 4, the first 2 at 49, the first 3 at 846. - Antti Karttunen, Sep 22 2017

Examples

			For n = 3, 3 itself is a squarefree number, thus a(3) = 0.
For n = 48, 48 = 2^4 * 3 is not squarefree, 49 = 7^2 is not squarefree, but 47 is, thus a(48) = abs(48-47) = 1.
For n = 49, neither 49 = 7^2, nor 48 = 2^4 * 3 nor 50 = 2^2 * 5 is squarefree, while both 47 and 51 are, thus a(49) = abs(49-47) = abs(49-51) = 2.
		

Crossrefs

Programs

  • Mathematica
    nn=110;With[{sqfr=Select[Range[nn+10],SquareFreeQ]},Flatten[Table[ Union[ Abs[ Nearest[ sqfr,n]-n]],{n,nn}]]] (* Harvey P. Dale, Jun 01 2012 *)
  • PARI
    A080733(n) = { my(k=0); while((!issquarefree(n+k))&&(!issquarefree(n-k)),k++); k; }; \\ Antti Karttunen, Sep 22 2017

Formula

a(A005117(n)) = 0.

Extensions

Examples added by Antti Karttunen, Sep 22 2017

A378373 Number of composite numbers (A002808) between consecutive nonsquarefree numbers (A013929), exclusive.

Original entry on oeis.org

1, 0, 1, 2, 0, 0, 2, 0, 1, 0, 1, 3, 2, 1, 0, 1, 0, 0, 1, 0, 1, 2, 1, 0, 2, 2, 1, 0, 2, 0, 1, 3, 0, 1, 3, 0, 0, 0, 1, 2, 2, 2, 0, 2, 0, 2, 0, 0, 0, 2, 2, 0, 1, 3, 2, 0, 0, 0, 0, 2, 2, 1, 0, 2, 0, 1, 0, 1, 0, 2, 2, 3, 0, 1, 2, 0, 0, 3, 2, 0, 2, 3, 3, 2, 0, 1, 2
Offset: 1

Views

Author

Gus Wiseman, Dec 02 2024

Keywords

Comments

All terms are 0, 1, 2, or 3 (cf. A078147).
The inclusive version is a(n) + 2.
The nonsquarefree numbers begin: 4, 8, 9, 12, 16, 18, 20, 24, 25, 27, 28, 32, 36, 40, ...

Examples

			The composite numbers counted by a(n) form the following set partition of A120944:
{6}, {}, {10}, {14,15}, {}, {}, {21,22}, {}, {26}, {}, {30}, {33,34,35}, {38,39}, ...
		

Crossrefs

For prime (instead of nonsquarefree) we have A046933.
For squarefree (instead of nonsquarefree) we have A076259(n)-1.
For prime power (instead of nonsquarefree) we have A093555.
For prime instead of composite we have A236575.
For nonprime prime power (instead of nonsquarefree) we have A378456.
For perfect power (instead of nonsquarefree) we have A378614, primes A080769.
A002808 lists the composite numbers.
A005117 lists the squarefree numbers, differences A076259.
A013929 lists the nonsquarefree numbers, differences A078147.
A073247 lists squarefree numbers with nonsquarefree neighbors.
A120944 lists squarefree composite numbers.
A377432 counts perfect-powers between primes, zeros A377436.
A378369 gives distance to the next nonsquarefree number (A120327).

Programs

  • Mathematica
    v=Select[Range[100],!SquareFreeQ[#]&];
    Table[Length[Select[Range[v[[i]]+1,v[[i+1]]-1],CompositeQ]],{i,Length[v]-1}]

A365685 a(n) is the smallest number k such that k*n is an exponentially squarefree number (A209061).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Sep 15 2023

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Module[{k = e}, While[! SquareFreeQ[k], k++]; p^(k-e)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(e) = {my(k = e); while(!issquarefree(k), k++); k - e;};
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^s(f[i,2]));}

Formula

Multiplicative with a(p^e) = p^A081221(e).
a(n) = A365684(n)/n.
a(n) >= 1, with equality if and only if n is an exponentially squarefree number (A209061).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + Sum_{k>=1} (p^f(k) - p^f(k-1))/p^k) = 1.06562841319..., where f(k) = A081221(k) and f(0) = 0.
Showing 1-10 of 13 results. Next