cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081253 Numbers k such that A081252(m)/m^2 has a local minimum for m = k.

Original entry on oeis.org

2, 4, 9, 18, 37, 74, 149, 298, 597, 1194, 2389, 4778, 9557, 19114, 38229, 76458, 152917, 305834, 611669, 1223338, 2446677, 4893354, 9786709, 19573418, 39146837, 78293674, 156587349, 313174698, 626349397, 1252698794, 2505397589
Offset: 1

Views

Author

Klaus Brockhaus, Mar 17 2003

Keywords

Comments

The limit of the local minima, lim_{n->infinity} A081252(n)/n^2 = 1/14. For local maxima cf. A081254.

Examples

			9 is a term since A081252(8)/8^2 = 5/64 = 0.078, A081252(9)/9^2 = 6/81 = 0.074, A081252(10)/10^2 = 8/100 = 0.080.
		

Crossrefs

Cf. A266071 (binary).

Programs

  • Mathematica
    Rest@ CoefficientList[Series[-x (x^2 - 2)/((x - 1) (x + 1) (2 x - 1)), {x, 0, 31}], x]
  • Python
    print([7*2**n//6 for n in range(1, 50)]) # Karl V. Keller, Jr., May 22 2022

Formula

a(n) = floor(2^(n-1)*7/3).
a(n) = a(n-2) + 7*2^(n-3) for n > 2; a(n+2) - a(n) = A005009(n-1); a(n+1) - a(n) = A062092(n-1).
G.f.: -x*(x^2 - 2)/((x - 1)*(x + 1)*(2*x - 1)).
a(n) = 2*a(n-1) for even n, otherwise a(n) = 2*a(n-1)+1, with a(1)=2. - Bruno Berselli, Jun 19 2014

Extensions

Formulas adjusted to be consistent with offset 1 by Pontus von Brömssen, Sep 27 2021