A081253 Numbers k such that A081252(m)/m^2 has a local minimum for m = k.
2, 4, 9, 18, 37, 74, 149, 298, 597, 1194, 2389, 4778, 9557, 19114, 38229, 76458, 152917, 305834, 611669, 1223338, 2446677, 4893354, 9786709, 19573418, 39146837, 78293674, 156587349, 313174698, 626349397, 1252698794, 2505397589
Offset: 1
Examples
9 is a term since A081252(8)/8^2 = 5/64 = 0.078, A081252(9)/9^2 = 6/81 = 0.074, A081252(10)/10^2 = 8/100 = 0.080.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..3321
- Klaus Brockhaus, Illustration for A053646, A081252, A081253 and A081254
- Chris J. Mitchell and Peter R. Wild, Constructing orientable sequences, arXiv:2108.03069 [math.CO], 2021. See Table 2 p. 12 but with different offset.
- Index entries for linear recurrences with constant coefficients, signature (2,1,-2).
Programs
-
Mathematica
Rest@ CoefficientList[Series[-x (x^2 - 2)/((x - 1) (x + 1) (2 x - 1)), {x, 0, 31}], x]
-
Python
print([7*2**n//6 for n in range(1, 50)]) # Karl V. Keller, Jr., May 22 2022
Formula
a(n) = floor(2^(n-1)*7/3).
G.f.: -x*(x^2 - 2)/((x - 1)*(x + 1)*(2*x - 1)).
a(n) = 2*a(n-1) for even n, otherwise a(n) = 2*a(n-1)+1, with a(1)=2. - Bruno Berselli, Jun 19 2014
Extensions
Formulas adjusted to be consistent with offset 1 by Pontus von Brömssen, Sep 27 2021
Comments