A081264 Odd Fibonacci pseudoprimes: odd composite numbers k such that either (1) k divides Fibonacci(k-1) if k == +-1 (mod 5) or (2) k divides Fibonacci(k+1) if k == +-2 (mod 5).
323, 377, 1891, 3827, 4181, 5777, 6601, 6721, 8149, 10877, 11663, 13201, 13981, 15251, 17119, 17711, 18407, 19043, 23407, 25877, 27323, 30889, 34561, 34943, 35207, 39203, 40501, 50183, 51841, 51983, 52701, 53663, 60377, 64079, 64681
Offset: 1
References
- R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer, 2002, p. 131.
- Paulo Ribenboim, The New Book of Prime Number Records, Springer, 1995, p. 127.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 104.
- A. Witno, Theory of Numbers, BookSurge, North Charleston, SC; see p. 83.
Links
- P. G. Anderson and Dana Jacobsen, Table of n, a(n) for n = 1..10000 (first 5861 terms from P. G. Anderson)
- P. G. Anderson, Fibonacci pseudoprimes under 2,217,967,487 and their factors
- Dorin Andrica and Ovidiu Bagdasar, Recurrent Sequences: Key Results, Applications, and Problems, Springer (2020), p. 88.
- Dorin Andrica and Ovidiu Bagdasar, On Generalized Lucas Pseudoprimality of Level k, Mathematics (2021) Vol. 9, 838.
- Dorin Andrica, Vlad Crişan, and Fawzi Al-Thukair, On Fibonacci and Lucas sequences modulo a prime and primality testing, Arab Journal of Mathematical Sciences, 2017.
- Dana Jacobsen, Pseudoprime Statistics, Tables, and Data (includes terms through 7e12)
- E. Lehmer, On the infinitude of Fibonacci pseudoprimes, Fibonacci Quarterly, 2, 1964, pp. 229-230.
- Andrzej Rotkiewicz, Arithmetic progressions formed by pseudoprimes, Acta Mathematica et Informatica Universitatis Ostraviensis, vol. 8 (2000), issue 1, pp. 61-74.
- Eric Weisstein's World of Mathematics, Fibonacci Pseudoprime
- Wikipedia, Fibonacci pseudoprime
- Index entries for sequences related to pseudoprimes
Programs
-
Maple
filter:= proc(n) local M,r; uses LinearAlgebra:-Modular; if isprime(n) then return false fi; M:= Mod(n, [[1,1],[1,0]],float[8]); if n^2 mod 5 = 1 then r:= n-1 else r:= n+1 fi; M:= MatrixPower(n,M,r); M[1,2] = 0 end proc:select(filter, [2*i+1 $ i=1..10^5]); # Robert Israel, Aug 05 2015
-
Mathematica
lst={}; f0=0; f1=1; Do[f2=f1+f0; If[n>1&&!PrimeQ[n], If[MemberQ[{1, 4}, Mod[n, 5]], If[Mod[f0, n]==0, AppendTo[lst, n]]]; If[MemberQ[{2, 3}, Mod[n, 5]], If[Mod[f2, n]==0, AppendTo[lst, n]]]]; f0=f1; f1=f2, {n, 100000}]; lst ocnQ[n_]:=CompositeQ[n]&&Which[Mod[n,5]==1,Divisible[Fibonacci[ n-1], n],Mod[n,5] == 4,Divisible[ Fibonacci[n-1],n],Mod[n,5]==2,Divisible[ Fibonacci[n+1],n], Mod[n,5]==3,Divisible[Fibonacci[n+1],n],True,False]; Select[Range[1,65001,2],ocnQ] (* Harvey P. Dale, Aug 23 2017 *)
-
Perl
use ntheory ":all"; foroddcomposites { $e = (0,-1,1,1,-1)[$%5]; say unless $e==0 || (lucas_sequence($, 1, -1, $+$e))[0] } 1e10; # _Dana Jacobsen, Aug 05 2015
Comments