cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081264 Odd Fibonacci pseudoprimes: odd composite numbers k such that either (1) k divides Fibonacci(k-1) if k == +-1 (mod 5) or (2) k divides Fibonacci(k+1) if k == +-2 (mod 5).

Original entry on oeis.org

323, 377, 1891, 3827, 4181, 5777, 6601, 6721, 8149, 10877, 11663, 13201, 13981, 15251, 17119, 17711, 18407, 19043, 23407, 25877, 27323, 30889, 34561, 34943, 35207, 39203, 40501, 50183, 51841, 51983, 52701, 53663, 60377, 64079, 64681
Offset: 1

Views

Author

T. D. Noe, Mar 15 2003, Jun 09 2008

Keywords

Comments

Lehmer shows that there are an infinite number of Fibonacci pseudoprimes (FPPs). In particular, the number Fibonacci(2p) is an FPP for all primes p > 5. Anderson lists over 5000 FPPs, while Jacobsen lists over 170000. The sequences A069106 and A069107 give k such that k divides Fibonacci(k-1) and k divides Fibonacci(k+1), respectively. See A141137 for even FPPs.

References

  • R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer, 2002, p. 131.
  • Paulo Ribenboim, The New Book of Prime Number Records, Springer, 1995, p. 127.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 104.
  • A. Witno, Theory of Numbers, BookSurge, North Charleston, SC; see p. 83.

Crossrefs

Programs

  • Maple
    filter:= proc(n) local M,r;
       uses LinearAlgebra:-Modular;
       if isprime(n) then return false fi;
       M:= Mod(n, [[1,1],[1,0]],float[8]);
       if n^2 mod 5 = 1 then r:= n-1 else r:= n+1 fi;
       M:= MatrixPower(n,M,r);
       M[1,2] = 0
    end proc:select(filter, [2*i+1 $ i=1..10^5]); # Robert Israel, Aug 05 2015
  • Mathematica
    lst={}; f0=0; f1=1; Do[f2=f1+f0; If[n>1&&!PrimeQ[n], If[MemberQ[{1, 4}, Mod[n, 5]], If[Mod[f0, n]==0, AppendTo[lst, n]]]; If[MemberQ[{2, 3}, Mod[n, 5]], If[Mod[f2, n]==0, AppendTo[lst, n]]]]; f0=f1; f1=f2, {n, 100000}]; lst
    ocnQ[n_]:=CompositeQ[n]&&Which[Mod[n,5]==1,Divisible[Fibonacci[ n-1], n],Mod[n,5] == 4,Divisible[ Fibonacci[n-1],n],Mod[n,5]==2,Divisible[ Fibonacci[n+1],n], Mod[n,5]==3,Divisible[Fibonacci[n+1],n],True,False]; Select[Range[1,65001,2],ocnQ] (* Harvey P. Dale, Aug 23 2017 *)
  • Perl
    use ntheory ":all"; foroddcomposites { $e = (0,-1,1,1,-1)[$%5]; say unless $e==0 || (lucas_sequence($, 1, -1, $+$e))[0] } 1e10; # _Dana Jacobsen, Aug 05 2015