cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081335 a(n) = (6^n + 2^n)/2.

Original entry on oeis.org

1, 4, 20, 112, 656, 3904, 23360, 140032, 839936, 5039104, 30233600, 181399552, 1088393216, 6530351104, 39182090240, 235092508672, 1410554986496, 8463329787904, 50779978465280, 304679870267392, 1828079220555776
Offset: 0

Views

Author

Paul Barry, Mar 18 2003

Keywords

Comments

Binomial transform of A034478. 4th binomial transform of (1, 0, 4, 0, 16, 0, 64, ...).
Case k=4 of the family of recurrences a(n) = 2*k*a(n-1) - (k^2-4)*a(n-2), a(0)=1, a(1)=k.

Crossrefs

Cf. A081336.

Programs

Formula

a(n) = 8*a(n-1) - 12*a(n-2), a(0)=1, a(1)=4.
G.f.: (1-4*x)/((1-2*x)*(1-6*x)).
E.g.f.: exp(4*x)*cosh(2*x).
a(n) = Sum_{k=0..floor(n/2)} binomial(n,2*k) * 4^(n-k) = Sum_{k=0..n} binomial(n,k) * 4^(n-k/2) * (1+(-1)^k)/2. - Paul Barry, Nov 22 2003
a(n) = Sum_{k=0..n} 4^k*A098158(n,k). - Philippe Deléham, Dec 04 2006