cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A081370 Numbers k such that binomial(k^2, k) reduced mod k^2 is 0.

Original entry on oeis.org

1, 30, 105, 120, 132, 231, 252, 380, 495, 520, 595, 616, 630, 680, 756, 858, 870, 924, 1040, 1155, 1173, 1365, 1428, 1463, 1547, 1610, 1722, 1768, 1820, 1953, 1976, 1995, 2002, 2016, 2080, 2093, 2170, 2184, 2277, 2310, 2508, 2520, 2530, 2552, 2618, 2622
Offset: 1

Views

Author

Labos Elemer, Mar 20 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Do[s=Mod[Binomial[n^2, n], n^2]; If[s==0, Print[n]], {n, 1, 10000}]
    Select[Range[3000],Mod[Binomial[#^2,#],#^2]==0&] (* Harvey P. Dale, Aug 26 2025 *)
  • PARI
    is(k) = binomod(k^2, k, k^2) == 0; \\ Amiram Eldar, Jul 30 2024, using Max Alekseyev's binomod.gp

A371471 a(n) = binomial(n^2,n) mod n^5.

Original entry on oeis.org

0, 6, 84, 796, 5, 3792, 7, 27768, 22608, 56440, 11, 83772, 13, 168448, 61065, 471536, 17, 445320, 19, 994080, 2258235, 4188272, 23, 6083208, 156275, 743912, 13548492, 3588928, 29, 16444800, 31, 28887008, 13685133, 2841992, 42053795, 49421088, 37, 24763840, 9171162
Offset: 1

Views

Author

Seiichi Manyama, Mar 24 2024

Keywords

References

  • D. B. Fuks and Serge Tabachnikov, Mathematical Omnibus: Thirty Lectures on Classic Mathematics, American Mathematical Society, 2007. Lecture 2. Arithmetical Properties of Binomial Coefficients, pages 27-44.

Crossrefs

Programs

  • Mathematica
    A371471[n_] := Mod[Binomial[n^2, n], n^5];
    Array[A371471, 50] (* Paolo Xausa, Jul 28 2025 *)
  • PARI
    a(n) = binomial(n^2, n)%n^5;

Formula

If p is prime and p>=5, a(p) = p.
Showing 1-2 of 2 results.