A081392 Numbers k such that the central binomial coefficient C(k, floor(k/2)) has only one prime divisor whose exponent is greater than one.
6, 9, 12, 13, 14, 15, 16, 18, 20, 21, 22, 24, 31, 32, 33, 35, 39, 41, 42, 43, 44, 55, 56, 57, 58, 59, 60, 61, 62, 65, 67, 72, 73, 74, 79, 107, 108, 109, 110, 113, 114, 115, 116, 131, 159, 219, 220, 271, 319, 341, 342, 1567, 1568, 1571, 1572
Offset: 1
Examples
For k=341, binomial(341,170) = 2*2*2*2*M, where M is a squarefree product of 48 further prime factors.
Programs
-
Mathematica
pde1Q[n_]:=Length[Select[FactorInteger[Binomial[n,Floor[n/2]]],#[[2]]> 1&]] == 1; Select[Range[1600],pde1Q] (* Harvey P. Dale, Jan 21 2019 *)
-
PARI
isok(n) = my(f=factor(binomial(n, n\2))); #select(x->(x>1), f[,2]) == 1; \\ Michel Marcus, Jul 30 2017
-
PARI
is(n) = { my(nf2 = n\2, nmnf2 = n-nf2, t); forprime(p = 2, n, if(val(n, p) - val(nf2, p) - val(nmnf2, p) > 1, t++; if(t > 1, return(0) ) ) ); t==1 } val(n, p) = my(r=0); while(n, r+=n\=p); r \\ David A. Corneth, Apr 03 2021
Extensions
a(52)-a(55) from Michel Marcus, Jul 30 2017
Comments