cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081410 a(n) = a(n-1) + a(n-2) + n (mod 3), with a(1)=a(2)=1.

Original entry on oeis.org

1, 1, 2, 4, 8, 12, 21, 35, 56, 92, 150, 242, 393, 637, 1030, 1668, 2700, 4368, 7069, 11439, 18508, 29948, 48458, 78406, 126865, 205273, 332138, 537412, 869552, 1406964, 2276517, 3683483, 5960000, 9643484, 15603486, 25246970, 40850457
Offset: 1

Views

Author

Benoit Cloitre, Apr 20 2003

Keywords

Crossrefs

Cf. A004695.

Programs

  • GAP
    a:=[1,1,2,4,8];; for n in [6..40] do a[n]:=a[n-1]+a[n-2]+a[n-3] -a[n-4]-a[n-5]; od; a; # G. C. Greubel, Aug 15 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+2*x^4)/((1-x^3)*(1-x-x^2)) )); // G. C. Greubel, Aug 15 2019
    
  • Maple
    seq(coeff(series((1+2*x^4)/((1-x^3)*(1-x-x^2)), x, n+1), x, n), n = 0 .. 40); # G. C. Greubel, Aug 15 2019
  • Mathematica
    RecurrenceTable[{a[1]==a[2]==1,a[n]==a[n-1]+a[n-2]+Mod[n,3]},a,{n,40}] (* or *) LinearRecurrence[{1,1,1,-1,-1},{1,1,2,4,8},40] (* Harvey P. Dale, Feb 01 2013 *)
  • PARI
    my(x='x+O('x^40)); Vec((1+2*x^4)/((1-x^3)*(1-x-x^2))) \\ G. C. Greubel, Aug 15 2019
    
  • Sage
    def A081410_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+2*x^4)/((1-x^3)*(1-x-x^2))).list()
    A081410_list(30) # G. C. Greubel, Aug 15 2019
    

Formula

a(n) = floor(C*F(n)) + b(n) where C=(9-sqrt(5))/4, F(n) is the n-th Fibonacci number and b(n) is the 6-periodic sequence (0, 0, -1, -1, 0, -1).
G.f.: (1 + 2*x^4)/((1-x^3)*(1-x-x^2)).
a(1)=1, a(2)=1, a(3)=2, a(4)=4, a(5)=8, a(n) = a(n-1) +a(n-2) +a(n-3) - a(n-4) -a(n-5). - Harvey P. Dale, Feb 01 2013