cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A056637 a(n) is the least prime of class n-, according to the Erdős-Selfridge classification of primes.

Original entry on oeis.org

2, 11, 23, 47, 283, 719, 1439, 2879, 34549, 138197, 1266767, 14920303, 36449279, 377982107, 1432349099, 22111003847, 110874748763
Offset: 1

Views

Author

Robert G. Wilson v, Jan 31 2001

Keywords

Comments

A prime p is in class 1- if p-1 has no prime factor larger than 3. If p-1 has other prime factors, p is in class (c+1)-, where c- is the largest class of its prime factors. See also A005109.
1432349099 < a(16) <= 25782283783.
a(18) <= 619108107719, a(19) <= 19811459447009, a(20) <= 152772264735359. These upper limits can be found by generating class (n+1)- primes from a list of n- class primes; if the latter is sufficiently complete, one can deduce that there is no smaller (n+1)- prime. - M. F. Hasler, Apr 05 2007

Crossrefs

Programs

  • Mathematica
    PrimeFactors[n_Integer] := Flatten[ Table[ #[[1]], {1}] & /@ FactorInteger[n]]; NextPrime[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; f[n_Integer] := Block[{m = n}, If[m == 0, m = 1, While[ IntegerQ[m/2], m /= 2]; While[ IntegerQ[m/3], m /= 3]]; Apply[Times, PrimeFactors[m] - 1]]; ClassMinusNbr[n_] := Length[NestWhileList[f, n, UnsameQ, All]] - 3; a = Table[0, {15}]; a[[1]] = 2; k = 5; Do[c = ClassMinusNbr[ k]; If[ a[[c]] == 0, a[[c]] = k]; k = NextPrime[k], {n, 3, 7223000}]; a

Formula

a(n+1) >= 2*a(n)+1, since a(n+1)-1 is even and must have a factor of class n- which is odd (n>1) and >= a(n). a(n+1) <= min { p = 2*k*a(n)+1 | k=1,2,3... such that p is prime }, since a(n) is a prime of class n-. - M. F. Hasler, Apr 05 2007

Extensions

Extended by Robert G. Wilson v, Mar 20 2003
More terms from Don Reble, Apr 11 2003
a(16) and a(17) from M. F. Hasler, Apr 21 2007

A276871 Sums-complement of the Beatty sequence for sqrt(5).

Original entry on oeis.org

1, 10, 19, 28, 37, 48, 57, 66, 75, 86, 95, 104, 113, 124, 133, 142, 151, 162, 171, 180, 189, 198, 209, 218, 227, 236, 247, 256, 265, 274, 285, 294, 303, 312, 323, 332, 341, 350, 359, 370, 379, 388, 397, 408, 417, 426, 435, 446, 455, 464, 473, 484, 493, 502
Offset: 1

Views

Author

Clark Kimberling, Sep 24 2016

Keywords

Comments

The sums-complement of a sequence s(1), s(2), ... of positive integers is introduced here as the set of numbers c(1), c(2), ... such that no c(n) is a sum s(j)+s(j+1)+...+s(k) for any j and k satisfying 1 <= j <= k. If this set is not empty, the term "sums-complement" also applies to the (possibly finite) sequence of numbers c(n) arranged in increasing order. In particular, the difference sequence D(r) of a Beatty sequence B(r) of an irrational number r > 2 has an infinite sums-complement, abbreviated as SC(r) in the following table:
r B(r) D(r) SC(r)
----------------------------------------------------
2+sqrt(1/2) A182769 A276869 A276888
sqrt(2)+sqrt(3) A110117 A276870 A276889
From Jeffrey Shallit, Aug 15 2023: (Start)
Simpler description: this sequence represents those positive integers that CANNOT be expressed as a difference of two elements of A022839.
There is a 20-state Fibonacci automaton for the terms of this sequence (see a276871.pdf). It takes as input the Zeckendorf representation of n and accepts iff n is a member of A276871. (End)

Examples

			The Beatty sequence for sqrt(5) is A022839 = (0,2,4,6,8,11,13,15,...), with difference sequence s = A081427 = (2,2,2,2,3,2,2,2,3,2,...).  The sums s(j)+s(j+1)+...+s(k) include (2,3,4,5,6,7,8,9,11,12,...), with complement (1,10,19,28,37,...).
		

Crossrefs

Programs

  • Mathematica
    z = 500; r = Sqrt[5]; b = Table[Floor[k*r], {k, 0, z}]; (* A022839 *)
    t = Differences[b]; (* A081427 *)
    c[k_, n_] := Sum[t[[i]], {i, n, n + k - 1}];
    u[k_] := Union[Table[c[k, n], {n, 1, z - k + 1}]];
    w = Flatten[Table[u[k], {k, 1, z}]]; Complement[Range[Max[w]], w];  (* A276871 *)

A005110 Class 2- primes (for definition see A005109).

Original entry on oeis.org

11, 29, 31, 41, 43, 53, 61, 71, 79, 101, 103, 113, 127, 131, 137, 149, 151, 157, 181, 191, 197, 211, 223, 229, 239, 241, 251, 271, 281, 293, 307, 313, 337, 379, 389, 401, 409, 421, 439, 443, 449, 457, 491, 521, 541, 547, 571, 593, 601, 613, 631, 641, 647, 653, 673
Offset: 1

Views

Author

Keywords

References

  • R. K. Guy, Unsolved Problems in Number Theory, A18.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    PrimeFactors[n_Integer] := Flatten[ Table[ #[[1]], {1}] & /@ FactorInteger[n]];
    f[n_Integer] := Block[{m = n}, If[m == 0, m = 1, While[ IntegerQ[m/2], m /= 2];
    While[ IntegerQ[m/3], m /= 3]];
    Apply[Times, PrimeFactors[m] - 1]];
    ClassMinusNbr[n_] := Length[NestWhileList[f, n, UnsameQ, All]] - 3;
    Prime[ Select[ Range[122], ClassMinusNbr[ Prime[ # ]] == 2 &] ] (* Robert G. Wilson v *)

Extensions

Edited and extended by Robert G. Wilson v, Mar 20 2003
Corrected by R. J. Mathar, Feb 01 2007

A005111 Class 3- primes (for definition see A005109).

Original entry on oeis.org

23, 59, 67, 83, 89, 107, 173, 199, 227, 233, 263, 311, 317, 331, 349, 353, 367, 373, 383, 397, 419, 431, 463, 479, 503, 509, 523, 563, 569, 587, 607, 617, 619, 661, 683, 727, 733, 739, 743, 787, 809, 821, 823, 853, 859, 881, 887, 907, 929, 947, 977, 983, 991, 1031, 1033
Offset: 1

Views

Author

Keywords

References

  • R. K. Guy, Unsolved Problems in Number Theory, A18.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    PrimeFactors[n_Integer] := Flatten[ Table[ #[[1]], {1}] & /@ FactorInteger[n]]; f[n_Integer] := Block[{m = n}, If[m == 0, m = 1, While[ IntegerQ[m/2], m /= 2]; While[ IntegerQ[m/3], m /= 3]]; Apply[Times, PrimeFactors[m] - 1]]; ClassMinusNbr[n_] := Length[NestWhileList[f, n, UnsameQ, All]] - 3; Prime[ Select[ Range[175], ClassMinusNbr[ Prime[ # ]] == 3 &]]

Extensions

Edited and extended by Robert G. Wilson v, Mar 20 2003
Corrected by R. J. Mathar, Feb 01 2007

A081426 Class 7- primes.

Original entry on oeis.org

1439, 8629, 10067, 14683, 17257, 19577, 20389, 22643, 23743, 27103, 28219, 29399, 31657, 32633, 33107, 33113, 33863, 34259, 34513, 35951, 36137, 36887, 37379, 40127, 40637, 40759, 42179, 42209, 42767, 44519, 44579, 45139, 49019, 49669
Offset: 1

Views

Author

Robert G. Wilson v, Mar 20 2003

Keywords

References

  • R. K. Guy, Unsolved Problems in Number Theory, A18.

Crossrefs

Programs

  • Mathematica
    PrimeFactors[n_Integer] := Flatten[Table[ #[[1]], {1}] & /@ FactorInteger[n]]; f[n_Integer] := Block[{m = n}, If[m == 0, m = 1, While[ IntegerQ[m/2], m /= 2]; While[ IntegerQ[m/3], m /= 3]]; Apply[Times, PrimeFactors[m] - 1]]; ClassMinusNbr[n_] := Length[NestWhileList[f, n, UnsameQ, All]] - 3; Prime[ Select[ Range[5200], ClassMinusNbr[ Prime[ # ]] == 7 &]]

A005112 Class 4- primes (for definition see A005109).

Original entry on oeis.org

47, 139, 167, 179, 269, 277, 347, 461, 467, 499, 599, 643, 691, 709, 797, 827, 829, 839, 857, 863, 967, 997, 1013, 1019, 1039, 1063, 1069, 1151, 1163, 1181, 1289, 1367, 1381, 1399, 1427, 1487, 1493, 1499, 1579, 1609, 1619, 1657, 1867, 1877, 1889, 1933, 1979
Offset: 1

Views

Author

Keywords

References

  • R. K. Guy, Unsolved Problems in Number Theory, A18.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    PrimeFactors[n_Integer] := Flatten[ Table[ #[[1]], {1}] & /@ FactorInteger[n]]; f[n_Integer] := Block[{m = n}, If[m == 0, m = 1, While[ IntegerQ[m/2], m /= 2]; While[ IntegerQ[m/3], m /= 3]]; Apply[Times, PrimeFactors[m] - 1]]; ClassMinusNbr[n_] := Length[NestWhileList[f, n, UnsameQ, All]] - 3; Prime[ Select[ Range[300], ClassMinusNbr[ Prime[ # ]] == 4 &]]

Extensions

Edited and extended by Robert G. Wilson v, Mar 20 2003

A081424 Class 5- primes (for definition see A005109).

Original entry on oeis.org

283, 359, 557, 659, 941, 1109, 1129, 1223, 1433, 1663, 1669, 1693, 1787, 1997, 2027, 2039, 2069, 2083, 2153, 2339, 2351, 2503, 2539, 2579, 2633, 2767, 2777, 2803, 2837, 2999, 3229, 3581, 3761, 3767, 3779, 3989, 4127, 4157, 4231, 4253, 4283, 4297, 4513
Offset: 1

Views

Author

Robert G. Wilson v, Mar 20 2003

Keywords

References

  • R. K. Guy, Unsolved Problems in Number Theory, A18.

Crossrefs

Programs

  • Mathematica
    PrimeFactors[n_Integer] := Flatten[ Table[ #[[1]], {1}] & /@ FactorInteger[n]]; f[n_Integer] := Block[{m = n}, If[m == 0, m = 1, While[ IntegerQ[m/2], m /= 2]; While[ IntegerQ[m/3], m /= 3]]; Apply[Times, PrimeFactors[m] - 1]]; ClassMinusNbr[n_] := Length[NestWhileList[f, n, UnsameQ, All]] - 3; Prime[ Select[ Range[700], ClassMinusNbr[ Prime[ # ]] == 5 &]]

A081425 Class 6- primes (for definition see A005109).

Original entry on oeis.org

719, 1319, 1699, 2447, 3343, 4079, 4139, 4457, 4517, 4679, 4703, 5273, 5647, 6653, 6793, 7523, 7529, 7559, 8599, 9227, 9587, 9623, 9839, 10159, 10343, 10723, 10771, 11069, 11213, 11279, 11321, 11489, 11863, 11887, 12163, 12917, 12919, 13163
Offset: 1

Views

Author

Robert G. Wilson v, Mar 20 2003

Keywords

References

  • R. K. Guy, Unsolved Problems in Number Theory, A18.

Crossrefs

Programs

  • Mathematica
    PrimeFactors[n_Integer] := Flatten[ Table[ #[[1]], {1}] & /@ FactorInteger[n]]; f[n_Integer] := Block[{m = n}, If[m == 0, m = 1, While[ IntegerQ[m/2], m /= 2]; While[ IntegerQ[m/3], m /= 3]]; Apply[Times, PrimeFactors[m] - 1]]; ClassMinusNbr[n_] := Length[NestWhileList[f, n, UnsameQ, All]] - 3; Prime[ Select[ Range[1700], ClassMinusNbr[ Prime[ # ]] == 6 &]]

A081429 Class 10- primes.

Original entry on oeis.org

138197, 207227, 621679, 621883, 633383, 760079, 829177, 863711, 898253, 978863, 1035499, 1036471, 1209191, 1451059, 1566179, 1658309, 1658353, 1761407, 1794229, 1796503, 1827479, 1900147, 2015303, 2029439, 2070997, 2072893
Offset: 1

Views

Author

Robert G. Wilson v, Mar 20 2003

Keywords

References

  • R. K. Guy, Unsolved Problems in Number Theory, A18.

Crossrefs

Programs

  • Mathematica
    PrimeFactors[n_Integer] := Flatten[Table[ #[[1]], {1}] & /@ FactorInteger[n]]; f[n_Integer] := Block[{m = n}, If[m == 0, m = 1, While[ IntegerQ[m/2], m /= 2]; While[ IntegerQ[m/3], m /= 3]]; Apply[Times, PrimeFactors[m] - 1]]; ClassMinusNbr[n_] := Length[NestWhileList[f, n, UnsameQ, All]] - 3; Prime[ Select[ Range[200000], ClassMinusNbr[ Prime[ # ]] == 10 &]]

A081430 Class 11- primes.

Original entry on oeis.org

1266767, 1520159, 2486717, 3316619, 4144541, 4512947, 4836779, 5389519, 5638379, 6218827, 6448979, 6633457, 6771419, 6907247, 7460149, 7462639, 7600597, 7739033, 7874627, 8153567, 8291573, 9110639, 9112319, 9121003
Offset: 1

Views

Author

Robert G. Wilson v, Mar 20 2003

Keywords

References

  • R. K. Guy, Unsolved Problems in Number Theory, A18.

Crossrefs

Programs

  • Mathematica
    PrimeFactors[n_Integer] := Flatten[Table[ #[[1]], {1}] & /@ FactorInteger[n]]; f[n_Integer] := Block[{m = n}, If[m == 0, m = 1, While[ IntegerQ[m/2], m /= 2]; While[ IntegerQ[m/3], m /= 3]]; Apply[Times, PrimeFactors[m] - 1]]; ClassMinusNbr[n_] := Length[NestWhileList[f, n, UnsameQ, All]] - 3; Prime[ Select[ Range[300000, 1000000], ClassMinusNbr[ Prime[ # ]] == 1 &]]
Showing 1-10 of 12 results. Next