cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A081533 Sum of terms in row n of A081532.

Original entry on oeis.org

1, 3, 7, 12, 31, 28, 127, 60, 91, 124, 2047, 168, 8191, 508, 403, 360, 131071, 546, 524287, 744, 1651, 8188, 8388607, 1170, 3751, 32764, 2821, 3048, 536870911, 2418, 2147483647, 2880, 26611, 524284, 15367, 4368, 137438953471, 2097148, 106483
Offset: 1

Views

Author

Amarnath Murthy, Mar 28 2003

Keywords

Crossrefs

Formula

a(n) = sigma(A005179(n)).

Extensions

More terms from David Wasserman, Jun 07 2004

A119265 Triangle read by rows, 1<=k<=n: T(n,k) = k-th divisor of the smallest odd number with exactly n divisors, A038547.

Original entry on oeis.org

1, 1, 3, 1, 3, 9, 1, 3, 5, 15, 1, 3, 9, 27, 81, 1, 3, 5, 9, 15, 45, 1, 3, 9, 27, 81, 243, 729, 1, 3, 5, 7, 15, 21, 35, 105, 1, 3, 5, 9, 15, 25, 45, 75, 225, 1, 3, 5, 9, 15, 27, 45, 81, 135, 405, 1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049, 1, 3, 5, 7, 9, 15, 21, 35, 45, 63, 105
Offset: 1

Views

Author

Reinhard Zumkeller, May 11 2006

Keywords

Crossrefs

Programs

  • Mathematica
    A038547 = Cases[Import["https://oeis.org/A038547/b038547.txt", "Table"], {, }][[All, 2]];
    row[n_] := row[n] = Divisors[A038547[[n]]];
    T[n_, k_] := row[n][[k]];
    Table[T[n, k], {n, 1, 100}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 19 2021 *)

Formula

T(n,1) = 1; T(n,n) = A038547(n);
T(n,k) = A027750(A006218(A038547(n)-1) + k).

A171783 Third smallest divisor of smallest number having exactly n divisors.

Original entry on oeis.org

4, 3, 4, 3, 4, 3, 3, 3, 4, 3, 4, 3, 3, 3, 4, 3, 4, 3, 3, 3, 4, 3, 3, 3, 3, 3, 4, 3, 4, 3, 3, 3, 3, 3, 4, 3, 3, 3, 4, 3, 4, 3, 3, 3, 4, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 4, 3, 4, 3, 3, 3, 3, 3, 4, 3, 3, 3, 4, 3, 4, 3, 3, 3, 3, 3, 4, 3, 3, 3, 4, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 4, 3, 4, 3, 3, 3, 4
Offset: 3

Views

Author

J. Lowell, Oct 12 2010

Keywords

Comments

Conjecture: a(n) = 4 for all prime numbers >= 3 and 3 for all composites
Third column of triangle in A081532. - N. J. A. Sloane, Oct 12 2010.

Examples

			a(4) = 3 because the divisors of 6 are 1, 2, 3, 6.
		

Crossrefs

Cf. A081532, A171784. - N. J. A. Sloane, Oct 12 2010.

Formula

a(n) = A292269(A005179(n)) for n >= 3. - Antti Karttunen, Oct 04 2017

Extensions

More terms from R. J. Mathar, Oct 13 2010

A085683 a(n) = Sum_{k = 1..N-1} floor(N/k) where N is the n-th prime.

Original entry on oeis.org

2, 4, 9, 15, 28, 36, 51, 59, 75, 102, 112, 141, 159, 169, 187, 218, 248, 262, 293, 313, 327, 357, 378, 412, 460, 483, 493, 515, 529, 553, 636, 658, 696, 706, 767, 781, 821, 857, 877, 918, 952, 972, 1032, 1048, 1071, 1085, 1167, 1239, 1266, 1280, 1306, 1342, 1364, 1422
Offset: 1

Views

Author

N. J. A. Sloane, Oct 28 2008

Keywords

Comments

The old entry with this sequence number was a duplicate of A081532.

Crossrefs

Programs

  • Mathematica
    (Rest@ FoldList[ Plus, 0, DivisorSigma[0, Range@ Prime@ 100]])[[ Prime@ Range@ 100]] -1 (* Giovanni Resta, Jun 09 2015 *)
  • Python
    from math import isqrt
    from sympy import prime
    def A085683(n): return -(s:=isqrt(m:=prime(n)))**2+(sum(m//k for k in range(1,s+1))<<1)-1 # Chai Wah Wu, Oct 23 2023

A171784 Fourth smallest divisor of smallest number having exactly n divisors.

Original entry on oeis.org

6, 8, 4, 8, 4, 4, 4, 8, 4, 8, 4, 4, 4, 8, 4, 8, 4, 4, 4, 8, 4, 4, 4, 4, 4, 8, 4, 8, 4, 4, 4, 4, 4, 8, 4, 4, 4, 8, 4, 8, 4, 4, 4, 8, 4, 4, 4, 4, 4, 8, 4, 4, 4, 4, 4, 8, 4, 8, 4, 4, 4, 4, 4, 8, 4, 4, 4, 8, 4, 8, 4, 4, 4, 4, 4, 8, 4, 4, 4, 8, 4, 4, 4, 4, 4, 8, 4, 4, 4, 4, 4, 4, 4, 8, 4, 4, 4, 8, 4, 8, 4, 4, 4, 8, 4
Offset: 4

Views

Author

J. Lowell, Oct 12 2010

Keywords

Comments

Fourth column of triangle in A081532. - N. J. A. Sloane, Oct 12 2010.

Examples

			a(5) = 8 because divisors of 16 are 1,2,4,8,16.
		

Crossrefs

Extensions

More terms from R. J. Mathar, Oct 13 2010
Showing 1-5 of 5 results.