A081554 a(n) = sqrt(2)*( (3+2*sqrt(2))^n - (3-2*sqrt(2))^n ).
0, 8, 48, 280, 1632, 9512, 55440, 323128, 1883328, 10976840, 63977712, 372889432, 2173358880, 12667263848, 73830224208, 430314081400, 2508054264192, 14618011503752, 85200014758320, 496582077046168, 2894292447518688
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
- Tanya Khovanova, Recursive Sequences
- Soumeya M. Tebtoub, Hacène Belbachir, and László Németh, Integer sequences and ellipse chains inside a hyperbola, Proceedings of the 1st International Conference on Algebras, Graphs and Ordered Sets (ALGOS 2020), hal-02918958 [math.cs], 17-18.
- Index entries for linear recurrences with constant coefficients, signature (6,-1).
Programs
-
Magma
m:=50; R
:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(8*x/(1-6*x+x^2))); // G. C. Greubel, Aug 16 2018 -
Mathematica
a = 3 + 2Sqrt[2]; b = 3 - 2Sqrt[2]; Table[Simplify[Sqrt[2](a^n - b^n)], {n, 0, 25}] CoefficientList[Series[8x/(1-6x+x^2),{x,0,40}],x] (* Harvey P. Dale, Mar 11 2011 *) Table[4 Fibonacci[2 n, 2], {n, 0, 50}] (* G. C. Greubel, Aug 16 2018 *)
-
PARI
x='x+O('x^50); concat([0], Vec(8*x/(1-6*x+x^2))) \\ G. C. Greubel, Aug 16 2018
Formula
a(n)^2 = 2*A003499(n)^2 - 8.
a(n) = 8*A001109(n).
G.f.: 8*x/(1-6*x+x^2). - Philippe Deléham, Nov 17 2008
a(0)=0, a(1)=8, a(n) = 6*a(n-1) - a(n-2) for n>1. - Philippe Deléham, Sep 19 2009
a(n) = 4*Pell(2*n) = 4*A000129(2*n). - G. C. Greubel, Aug 16 2018
Comments