cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A081560 Binomial transform of expansion of exp(cosh(2*x)).

Original entry on oeis.org

1, 1, 5, 13, 89, 361, 3005, 16213, 157169, 1048081, 11509685, 90793693, 1108802249, 10054120441, 134712712685, 1375818738853, 20017552431329, 226802388529441, 3554162892847205, 44153857947768493, 740316072791255609
Offset: 0

Views

Author

Paul Barry, Mar 22 2003

Keywords

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(Cosh(2*x)+x-1) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 13 2019
    
  • Maple
    seq(coeff(series(exp(cosh(2*x)+x-1), x, n+1)*factorial(n), x, n), n = 0 .. 30); # G. C. Greubel, Aug 13 2019
  • Mathematica
    With[{nn = 200}, CoefficientList[Series[Exp[Cosh[2 x] + x -1], {x, 0, nn}], x] Range[0, nn]!] (* Vincenzo Librandi, Aug 08 2013 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace( exp(cosh(2*x)+x-1) )) \\ G. C. Greubel, Aug 13 2019
    
  • Sage
    [factorial(n)*( exp(cosh(2*x)+x-1) ).series(x,n+1).list()[n] for n in (0..30)] # G. C. Greubel, Aug 13 2019

Formula

E.g.f.: exp(x)*exp(cosh(2*x))/e = exp(cosh(2*x)+x-1).

A081561 Second binomial transform of expansion of exp(cosh(2*x)).

Original entry on oeis.org

1, 2, 8, 32, 176, 992, 6848, 48512, 398336, 3356672, 31751168, 307914752, 3282292736, 35827392512, 423577223168, 5121571684352, 66347485822976, 877984005619712, 12344359378485248, 177098976447168512
Offset: 0

Views

Author

Paul Barry, Mar 22 2003

Keywords

Comments

Binomial transform of A081560.

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(Cosh(2*x)+2*x-1) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 13 2019
    
  • Maple
    seq(coeff(series(exp(cosh(2*x)+2*x-1), x, n+1)*factorial(n), x, n), n = 0 .. 30); # G. C. Greubel, Aug 13 2019
  • Mathematica
    With[{nn = 30}, CoefficientList[Series[Exp[Cosh[2 x] + 2 x - 1], {x, 0, nn}], x] Range[0, nn]!] (* Vincenzo Librandi, Aug 08 2013 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace( exp(cosh(2*x)+2*x-1) )) \\ G. C. Greubel, Aug 13 2019
    
  • Sage
    [factorial(n)*( exp(cosh(2*x)+2*x-1) ).series(x,n+1).list()[n] for n in (0..30)] # G. C. Greubel, Aug 13 2019

Formula

E.g.f.: exp(2*x) * exp(cosh(2*x))/e = exp(cosh(2*x)+2*x-1)
Showing 1-2 of 2 results.