cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A081559 Expansion of e.g.f.: exp(cosh(2*x)-1), even powers only.

Original entry on oeis.org

1, 4, 64, 1984, 97024, 6713344, 615829504, 71654785024, 10243143368704, 1755968011239424, 354197952894337024, 82788022987201183744, 22140953727834378993664, 6703959915806302859689984, 2277487386474356139699994624, 861378969099073547571187154944
Offset: 0

Views

Author

Paul Barry, Mar 22 2003

Keywords

Comments

Periodic zeros suppressed.

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(Cosh(2*x)-1) )); [Factorial(2*n-2)*b[2*n-1]: n in [1..Floor((m-2)/2)]]; // G. C. Greubel, Aug 13 2019
    
  • Maple
    seq(coeff(series(exp(cosh(2*x)-1), x, 2*n+1)*factorial(2*n), x, 2*n), n = 0 .. 15); # G. C. Greubel, Aug 13 2019
  • Mathematica
    With[{nn = 30}, CoefficientList[Series[Exp[Cosh[2*x]-1], {x, 0, nn}], x] Range[0, nn]!][[1 ;; ;; 2]] (* G. C. Greubel, Aug 13 2019 *)
  • PARI
    my(x='x+O('x^30)); v=Vec(serlaplace( exp(cosh(2*x)-1) )); vector(#v\2, n, v[2*n-1]) \\ G. C. Greubel, Aug 13 2019
    
  • Sage
    [factorial(2*n)*( exp(cosh(2*x)-1) ).series(x, 2*n+1).list()[2*n] for n in (0..15)] # G. C. Greubel, Aug 13 2019

Formula

E.g.f.: exp(cosh(2*x))/e = exp(cosh(2*x)-1).

Extensions

Definition amended by Georg Fischer, Dec 03 2021

A081561 Second binomial transform of expansion of exp(cosh(2*x)).

Original entry on oeis.org

1, 2, 8, 32, 176, 992, 6848, 48512, 398336, 3356672, 31751168, 307914752, 3282292736, 35827392512, 423577223168, 5121571684352, 66347485822976, 877984005619712, 12344359378485248, 177098976447168512
Offset: 0

Views

Author

Paul Barry, Mar 22 2003

Keywords

Comments

Binomial transform of A081560.

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(Cosh(2*x)+2*x-1) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 13 2019
    
  • Maple
    seq(coeff(series(exp(cosh(2*x)+2*x-1), x, n+1)*factorial(n), x, n), n = 0 .. 30); # G. C. Greubel, Aug 13 2019
  • Mathematica
    With[{nn = 30}, CoefficientList[Series[Exp[Cosh[2 x] + 2 x - 1], {x, 0, nn}], x] Range[0, nn]!] (* Vincenzo Librandi, Aug 08 2013 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace( exp(cosh(2*x)+2*x-1) )) \\ G. C. Greubel, Aug 13 2019
    
  • Sage
    [factorial(n)*( exp(cosh(2*x)+2*x-1) ).series(x,n+1).list()[n] for n in (0..30)] # G. C. Greubel, Aug 13 2019

Formula

E.g.f.: exp(2*x) * exp(cosh(2*x))/e = exp(cosh(2*x)+2*x-1)
Showing 1-2 of 2 results.