A081559 Expansion of e.g.f.: exp(cosh(2*x)-1), even powers only.
1, 4, 64, 1984, 97024, 6713344, 615829504, 71654785024, 10243143368704, 1755968011239424, 354197952894337024, 82788022987201183744, 22140953727834378993664, 6703959915806302859689984, 2277487386474356139699994624, 861378969099073547571187154944
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..100
Programs
-
Magma
m:=30; R
:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(Cosh(2*x)-1) )); [Factorial(2*n-2)*b[2*n-1]: n in [1..Floor((m-2)/2)]]; // G. C. Greubel, Aug 13 2019 -
Maple
seq(coeff(series(exp(cosh(2*x)-1), x, 2*n+1)*factorial(2*n), x, 2*n), n = 0 .. 15); # G. C. Greubel, Aug 13 2019
-
Mathematica
With[{nn = 30}, CoefficientList[Series[Exp[Cosh[2*x]-1], {x, 0, nn}], x] Range[0, nn]!][[1 ;; ;; 2]] (* G. C. Greubel, Aug 13 2019 *)
-
PARI
my(x='x+O('x^30)); v=Vec(serlaplace( exp(cosh(2*x)-1) )); vector(#v\2, n, v[2*n-1]) \\ G. C. Greubel, Aug 13 2019
-
Sage
[factorial(2*n)*( exp(cosh(2*x)-1) ).series(x, 2*n+1).list()[2*n] for n in (0..15)] # G. C. Greubel, Aug 13 2019
Formula
E.g.f.: exp(cosh(2*x))/e = exp(cosh(2*x)-1).
Extensions
Definition amended by Georg Fischer, Dec 03 2021
Comments