A081583 Third row of Pascal-(1,2,1) array A081577.
1, 10, 46, 136, 307, 586, 1000, 1576, 2341, 3322, 4546, 6040, 7831, 9946, 12412, 15256, 18505, 22186, 26326, 30952, 36091, 41770, 48016, 54856, 62317, 70426, 79210, 88696, 98911, 109882, 121636, 134200, 147601, 161866, 177022, 193096
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
[(2+9*n+9*n^3)/2: n in [0..40]]; // Vincenzo Librandi, Aug 09 2013
-
Maple
seq((2+9*n+9*n^3)/2, n=0..40); # G. C. Greubel, May 25 2021
-
Mathematica
CoefficientList[Series[(1+2x)^3/(1-x)^4, {x,0,50}], x] (* Vincenzo Librandi, Aug 09 2013 *) LinearRecurrence[{4,-6,4,-1},{1,10,46,136},60] (* Harvey P. Dale, Oct 01 2021 *)
-
Sage
a = lambda n: hypergeometric([-n, -3], [1], 3) [simplify(a(n)) for n in range(36)] # Peter Luschny, Nov 19 2014
Formula
a(n) = (2 + 9*n + 9*n^3)/2.
G.f.: (1+2*x)^3/(1-x)^4.
a(n) = hypergeommetric2F1([-n, -3], [1], 3). - Peter Luschny, Nov 19 2014
E.g.f.: (1/2)*(2 + 18*x + 27*x^2 + 9*x^3)*exp(x). - G. C. Greubel, May 25 2021
Comments