cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081583 Third row of Pascal-(1,2,1) array A081577.

Original entry on oeis.org

1, 10, 46, 136, 307, 586, 1000, 1576, 2341, 3322, 4546, 6040, 7831, 9946, 12412, 15256, 18505, 22186, 26326, 30952, 36091, 41770, 48016, 54856, 62317, 70426, 79210, 88696, 98911, 109882, 121636, 134200, 147601, 161866, 177022, 193096
Offset: 0

Views

Author

Paul Barry, Mar 23 2003

Keywords

Comments

Equals binomial transform of [1, 9, 27, 27, 0, 0, 0, ...] where (1, 9, 27, 27) = row 3 of triangle A013610. - Gary W. Adamson, Jul 19 2008

Crossrefs

Programs

  • Magma
    [(2+9*n+9*n^3)/2: n in [0..40]]; // Vincenzo Librandi, Aug 09 2013
    
  • Maple
    seq((2+9*n+9*n^3)/2, n=0..40); # G. C. Greubel, May 25 2021
  • Mathematica
    CoefficientList[Series[(1+2x)^3/(1-x)^4, {x,0,50}], x] (* Vincenzo Librandi, Aug 09 2013 *)
    LinearRecurrence[{4,-6,4,-1},{1,10,46,136},60] (* Harvey P. Dale, Oct 01 2021 *)
  • Sage
    a = lambda n: hypergeometric([-n, -3], [1], 3)
    [simplify(a(n)) for n in range(36)] # Peter Luschny, Nov 19 2014

Formula

a(n) = (2 + 9*n + 9*n^3)/2.
G.f.: (1+2*x)^3/(1-x)^4.
a(n) = hypergeommetric2F1([-n, -3], [1], 3). - Peter Luschny, Nov 19 2014
E.g.f.: (1/2)*(2 + 18*x + 27*x^2 + 9*x^3)*exp(x). - G. C. Greubel, May 25 2021