A081584 Fourth row of Pascal-(1,2,1) array A081577.
1, 13, 79, 307, 886, 2086, 4258, 7834, 13327, 21331, 32521, 47653, 67564, 93172, 125476, 165556, 214573, 273769, 344467, 428071, 526066, 640018, 771574, 922462, 1094491, 1289551, 1509613, 1756729, 2033032, 2340736, 2682136, 3059608
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Magma
[(8+6*n+81*n^2-18*n^3+27*n^4)/8: n in [0..40]]; // Vincenzo Librandi, Aug 09 2013
-
Maple
seq((8+6*n+81*n^2-18*n^3+27*n^4)/8, n=0..40); # G. C. Greubel, May 26 2021
-
Mathematica
CoefficientList[Series[(1+2x)^4/(1-x)^5, {x,0,40}], x] (* Vincenzo Librandi, Aug 09 2013 *) LinearRecurrence[{5,-10,10,-5,1},{1,13,79,307,886},40] (* Harvey P. Dale, Sep 18 2024 *)
-
Sage
[(8+6*n+81*n^2-18*n^3+27*n^4)/8 for n in (0..40)] # G. C. Greubel, May 26 2021
Formula
a(n) = (8 + 6*n + 81*n^2 - 18*n^3 + 27*n^4)/8.
G.f.: (1+2*x)^4/(1-x)^5.
E.g.f.: (1/8)*(8 + 96*x + 216*x^2 + 144*x^3 + 27*x^4)*exp(x). - G. C. Greubel, May 26 2021
Comments